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I. Introduction 
The analysis of data in contingency tables 

has traditionally been focused on tests of in- 
dependence between variables using techniques 
which assume independent indentically distributed 
(iid) observations. In general, the lid assump- 
tion leads to multinomial and Poisson distribu- 
tions of cell totals, and tests can be carried 
out using likelihood techniques. This may be 
reasonable for workers in biological, medical and 
other exper~tal fields (though even here it 
can sometimes be called into question), but for 
most users of data obtained from sample surveys, 
it is quite unrealistic. In the context of fi- 
nite population sampling, the iid assumption is 
only reasonable for simple random samples from 
large populations. As most survey data are ob- 
tained from complex sample designs, alternative 
means of analyzing these data need to be. developed. 

When faced with this problem, many analysts 
have resorted to using the traditional tools, eg, 
Pearson's Chi-Squared Test for independence, and 
noting that the violation of the iid assumptions 
forces one to be extremely cautious about the va- 
lidity of any conclusions drawn from their analy- 
ses. See for example Little (1978). The danger 
in using the traditional techniques of analysis 
When the iid assumptions are invalid because the 
data are drawn in clusters has been demonstrated 
empirically by Monte Carlo simulation techniques 
by Cowan and Binder (1978) and analytically by 
Fellegi (1978) and Scott (1978). A method for 
analyzing data from simple random samples of 
clusters of size two has been developed by Cohen 
(1976) and extended to clusters of arbitrary size 
k by Altham (1976). This work has not yet been 
extended to the more usual case (at least for 
sample survey data) of unequal probability, mul- 
ti-stage selection of clusters of unequal sizes. 

Recently, analytic techniques yielding more 
information than simple tests of hypotheses of 
independence have become available. For example, 
Grizzle, Starmer and Koch (1969) and Bishop Fien- 
berg and Holland (1974) have developed methods 
utilizing techniques based on linear and log-lin- 
ear models of cell probabilities. A wide range 
of hypotheses can be framed in terms of the para- 
meters of these models. In particular, the log- 
linear model which is discussed in both Qf these 
works allows for traditional tests of hypotheses 
of independence, as well as more informative ana- 
lyses under the same framework. 

At this time, methods for testing hypotheses 
based on parameters of these models are dependent 
on the assumption of simple random sampling (or 
at most, stratified random sampling). Bishop, 
Fienberg and Holland (1974) for example, limit 
their discussions to the analysis of contingency 
tables where the cell totals follow Poisson, mul- 
tinomial or product multinomial sampling distri- 
butions. However, in the more general framework 
of Grizzle, Starmer and Koch (I 968), the tools 
for analysis of data obtained from complex sam- 
ple designs are developed, but are not actually 
applied to this problem. These tools are further 
expanded by Koch, Freeman and Freeman (1975), 
Freeman and Koch (1976) , Freeman, Freeman and 

Brock (1977), and Freeman, Freeman, Brock and 
Koch (1976). It seems that as yet, no one has 
applied these tools to the general problem of 
testing the fit of log-linear models (allowing 
for the usual tests of independence) to data from 
complex sample surveys. Fellegi (1978) and Scott 
(1978) consider similar techniques for specifi- 
cally testing independence in an r x c classifi- 
cation and simple goodness of fit tests, hut no- 
thing more complex. 

2. Framework for Analysis 
Let us briefly consider the general model 

developed by Grizzle, Starmer and Koch (1969), 
and the analytic techniques appropriate for the 
model. As previously noted, this model contains, 
as a special case, the log-linear models discuss- 
ed by Bishop, et al (1974) which allow for tests 
of independence. 

Let ~' = (z, z ,...,zc)be a multidin~nsion- 
~ 1 2 

al table of cell classification probabilities 
strung out into a one dimensional vector, for the 
population. We assume that we have a sample 
drawn from this population from which we can es- 
timate ~ . About the sample design, we assume: 

(I) The existence of a consistent estimator 
~' = (z ,...,Zc ) for K' 
~ 1 ~ 

(2) The existence of a consistent estimator 
~or^tbe sample covariance matrix of 
~, V(~), say. 
~ ~ 

(3) The asymptotic multiyariate normality 
of the estimator of ~. 

~ 

Consider a family of functions of the form: 
F(~) = K In(AZ), where, ~is defined as before, 

A and K a r e  uxc  and t x u  m a t r i c e s  o f  c o n s t a n t s ,  
, , . ,  N 

respectively. By in(A~) we mean the vector of 

n a t u r a l  l o g a r i t h m s  o f  t h e  c o r r t ~ n e n t s  o f  AII. 
N ~  

The athuelement of the vector F([)~ is given 

by, F (~) = ?~ K(~,T)In{X ai~i}, where t<u<c. 
~- T=I -- 

We can obtain a consistent estimator of F([) by 
~ N 

A 

substituting ~ for ~ in the definition of F (~) 
. . . . .  

above. Using the Taylor Series expansion method, 
Grizzle et al, (1969) (or any of several other 
methods discussed in Kish and Frankel (1974) or 
in Kalton (I 977) ), we can estimate the sample 
covariance matrix, S, of F(K) using the estimator 

A A 

V(K). That is, S = HV (Z)H' where the i,jth ele- 

ment of H is 
~ 3F i 

3~j ~=~ 

Thus, if we can express the null hypothesis 
in the form H : F(~)=0, then, under H , F(~) S-I 

o ~ ~ ~ o ~ ~ ~ A 

F' (K) is asymptotically the same as that pro- 
N 

posed by Wald (1943) and is approximately dis- 
tributed as a X 2 where u is the rank of S (u) ' _" 
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For S based on a small number of degrees of free- 
N 

A A 

dora, it seems reasonable that P (z) S -I F' (7) would 
N 

N 

be approximately distributed as an F (u,df)' where 

df is the number of degrees of freedom used in 
estimating S. 

For example, consider the case of testing for 
independence in a 2x2 table, with population cell 
probabilities given by: 

21 ~2 2 
The usual express i o] of the null hypothesis of 

independence is Ho: Z11 z22 = ~I 2z22. We can re- 

express this in the above format as HoF(~) = 0, 

where A = 14 and K = (I, -I, -I, I). It can be 

easily seen that in this case, 

Vg Kij ~I COv(~i~, ~I ) 
S = ij,kl : ^ '  " ^ ..... ' 

Z 
ij Zkl 

so that, under the null hypothesis, 

~(~) s -~ ~,(~) = 

2 
(in ~11 + In ~22- in ~12 - in ~21 ) 

s % x2 
(I) ' 

or as F (l,df)if the number of degrees of freedom 

is small. 
In the case of a 2X2 table, as shown here, the 

mathematics of the analysis are quite simple. 
This is not true for the general rxs table, and 
certainly not for a higher dimensional table. 
However, in terms of matrix algebra, the tests of 
independence, or in the language of loglinear 
modelers, tests for zero interactions, remain 
tests of linear combinations of logarithms of 
cell proportions. By using a computer for the 
calculations of test statistics, and specifica- 
tion of contrasts, this complexity need not be a 
limiting factor in the analysis. 

3. An Example 
The following example is based on data ob- 

tained from the Integration Test of the Canada 
Health Survey, which was conducted in June and 
July of 1977 in the provinces of Nova Scotia, 
New Brunswick and parts of Quebec. Briefly, the 
sample design consisted of a stratified, multi- 
stage selection of clusters of roughly equal size 
with equal probability within strata. A dispro- 
portionate allocation (square root) was used among 
provinces and regions in Quebec in order to 
achieve a certain degree of accuracy at these 
subnational levels. The total sample size was 
around 500 for the variables we will use. A 
more detailed discussion of the sample design can 
be found in Chinappa (1978). 

For the purposes of this example, a simple 
fornmla for calculating variances and covariances 
for ratio estimates, taking into account sample 
differences between first stage units only, was 
utilized. Some strata with only one primary 
selection had to be collapsed for purposes of 
variance calculation, yielding six strata made up 
of 5, 3, 3, 4, 2, and 2 primary sampling units 
(PSU's) each. The sampling fractions (and thus, 
the sample weights) varied by a factor of ten, 
with the urban Quebec stratum having the smallest 

sampling fraction and the New Brunswick stratum 
the largest. Normally, the number of degrees of 
freedom for estimating variances is given by 
(n h - I), where n h is the number of PSU's in the 

h th stratum. However, because of unequal rates of 
sampling, this is in fact an over estimate of the 
"effective" number of degrees of freedom for this 
calculation. Cochran (I 977) discusses a procedure 
due to Satterthwaite for estimating an effective 
number of degrees of freedom for this case. 
Assuming variability within strata is relatively 
constant among strata, and that the sampling frac- 
tions are all very small, using the Satterthwaite 
procedure, we arrive at an effective number of de- 
grees of freedom of 3, a reduction from 7 (nh-1) 

=13 which we would have had if proportionate allo- 
cation had been used. 

Three variables are used in this example, 
each being an indicator of hypertension. They are: 
INTERVIEW: A response to an interviewer admini, 
stered questionnaire, possibly a proxy response. 
One person responds for the whole household. 
PHYSICAL: A physical measure of blood pressure, 
yielding a classification into the presence or 
absence of hypertension. 
PERSONAL: A personal response to a self-admini- 
stered qestionnaire. 
The unweighted sample totals and proportions for 
those who responded to all three questions are 
given in Table I. Weighted estimates of the same 
are given in Table II. These variables were 
chosen, not so much for their substantive interest 
as to denDnstrate the use of the proposed analy- 
tical procedures. There should be no doubt that 
the three variables are dependent, and with a 
large enough sample, this dependence could be de- 
tected. 

First, using the ratio estimates in Table II, 
and estimates of their sample variances and covar- 
iances, we can proceed with fitting a log-linear 
model as discussed in Section 2. If we string 
out the 2X2X2 table row by row as found in Tables 
I and II, we can test the three factor interaction 
term by setting A_:I 8 and Z=(-I, I, I, -I, I, -I, 

-I, I ), which yields, F (~) ---2.428, with a sample 
variance of S=I .381, and a Wald statistic of 4.271. 
Here, F is the linear contrast of logs of the cell 
proportions appropriate for testing the three 
factor interaction, and can be obtained using the 
usual techniques of analyzing the analysis of 
variance type models. Following the framework set 
up in Section 2, we would exit this statistic to 
be distributed as an F I 3" which has a 95% cut 
off point of 7.71, so ~6 ~hree factor interaction 
is not significant. If we conduct the same 
analysis assuming a simple random sample of size 
476, we get a Chi-squared statistic of 3.44, which 
is just shy of the 95% point of 3.84. In either 
case, we would accept the null hypothesis of no 
three factor interaction at a .05 significance 
level. Table III contains a sunmary of a series 
of hierarchical tests using the proposed frame- 
work and the traditional "naive approach". 

In fact, inferences based on the two ap, 
proaches are not drastically different. That is 
probably because there is not a dramatic in tra- 
class correlation for any of these variables. In 
fact, the average of the estimated design effects 
turns out to be slightly less than one, so we 
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would not expect there to be drastic differences. 
However, even here, testing at a . 05 level, the 
traditional method gives two significant tw~ fact- 
or interactions where the proposed method would 
allow collapsing over the INTERVIEW response. 

3. An Empirical Study 
One drawback of this method is that it re- 

quires the calculation of a variance-covariance 
matrix for cell proportion estimates. For small 
tables, this need not be a problem. For larger 
tables, as the number of variances and covariances 
increases with the square of the number of cells, 
~ich itself increases with the product of the 
numbers of categories in each classification var- 
iable, this matrix can quickly get out of hand. 

Fellegi (1978) suggests an heurestically 
reasonable statistic for testing independence in 
an rxc classification which utilizes an "average 
design effect", and might be helpful in this 
situation 2 The statistic is : 

X I/b EE (~ij - ~i- ~ j)2 = -- ......... • , where 
13 ~i- ~-j 

A 

= n__n_ 7 $ var(~ij) 
rc i 3 ^ 

Kij (1-~ij) 

This is nothing more than the usual Pearson's Chi- 
Squared statistic divided by an average of the 
estimated design effects, averaging over all cells 
in the table. It is conjectured that X should 
follow a distribution which could reasonably be 
approximated by an ordinary X z distribution with 
appropriate degrees of freedom. This statistic 
seemed to perform reasonably well in his empirical 
studies as well as in those presented in this 
paper. It does not perform as well as the Wald 
statistic previously described, and should only be 
used when this statistic is unavailable. 

The example in Section 2 used to illustrate 
the technique is not especially useful for point- 
ing out the difference between the various pro- 
posed techniques since the design effects for the 
various cells are not large. In fact, as pre- 
viously stated, the average design effect (Felle- 
gi's Z ) is slightly less than one. (Recall, the 
variance estimates are based on only approximately 
3 degrees of freedom. ) In order to compare 
Fellegi' s proposed X and the Wald statistic, and 
also to see if it is reasonable to use an F- 
distribution for these statistics in cases where 
the design effects are of some consequence, a 
small Monte Carlo simulation study was undertaken. 

The simulation study was restricted to a tm~- 
stage equal probability sample of equal size 
clusters with equal size subsamples. The analysis 
was restricted to a test of independence of two 
variables in a 2x2 classification The data were 
generated in such a way as to have expected values 
of cell proportions equal to various 2x2 tables 
having independent classification variables. The 
models thus satisfied the null hypotheses of 
independence so that the empirical distributions 
of the statistics could be compared with the theo- 
retical null X 2 and F distribations with the 
appropriate degrees of freedom. 

In order to sinmlate a design effect, a 
distribution was ~sed on selected cluster 
classifaction probabilities having expected values 
the Kij's satisfying the null hypothesis. The 

obvious multivariate distribution to impose on 
these Pij's is a Dirichlet distribution (see 

Johnson and Kotz (1970).) The parameters of this 
distribution, together with the size of the clus- 
ter subsample determine the intraclass correla- 
tion, and thus the design effects for estimating 
cell proportions. This allowed for relatively 
easy manipulation of the characteristics studied 
but also resulted in a serious simplification 
when compared with many realistic sample designs. 
The intraclass correlations for all variances 
and covariances are equal for all cells in the 
table. This certainly need not be the case in an 
actual population. A s ~  of some of the re- 
sults, organized by the number of sampled clus- 
ters, is presented in Table IV. These figures 
are based on 1000 replications. 

The three tables of expected cell propor- 
tions are shown at the top of Tables A, B, and C. 
There were four independent simulation exper~ts 
for each of the three sample designs I, 2, and 3. 
The sample design is described at the top of each 
of the sub-tables. 

For each experiment, both the Wald statistic 

~, ~-I ~, and Fellegi' s X were con~ted, and the 
proportion of observations larger than some of the 
usual critical values of the appropriate X z and F 
distributions are reported as the empirically 
observed significance levels corresponding to the 
nominal levels given at the top of each sub-table. 

The results for design I are not terribly 
interesting since we have a large sample size 
(2000), and a large number of degrees of freedom 
for variance estimates (199), so that the X z and 
F distribution critical values are very close. 
The Wald statistic with F distribution critical 
values with a few exceptions seems to match the 
nominal levels better than the same with X 2 crit- 
cal vlaues, hut there does not seem to be much to 
choose between X and the Wald statistic. There 
are no obvious trends with regards to small cell 
sizes or different design effects. 

Results for design 2 indicate that we can 
dismiss the use of X 2 cutoff points in favor of F 
distribution cutoff points for the Wald statistic 
which performs rather well except for table C. 
With regards to Fellegi's X, we can dismiss the 
use of F distribution cutoff points. For the most 
part, the Wald statistic out-performs Fellegi's X, 
though again only marginally. Both statistics 
have trouble with table C, because of its small 
expected cell sizes. It should be said here that 
in the case where the simulation returned a sample 
table with an empty cell, no analysis was carried 
out. This seemed to match usual practice, but 
obviously results in biased estimates of cell 
proportions. 

In design 3, the Wald statistic with F dist- 
ribution cutoff points again performs reasonably 
well except for table C, and outperforms Fellegi's 
X fairly consistently. Fellegi's X tends to have 
actual significance levels larger than the nominal 
ones, and in all cases, larger than those of the 
Wald statistic. 

In s ~ ,  this small study indicaties that 
when available, the Wald statistic, using cutoff 
points from the F distribution should be the pre- 
ferred procedure. When this statistic is unavail- 
able, Fellegi's X with X z cutoff points performs 
surprizingly well. Again, it should be emphasized 
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that this study tests Fellegi's X under most fav- 
orable conditions. If there were some variability 
among the individual cell design effects, one 
would expect its performance to suffer. In any 
case, one should avoid this type of analysis when 
expected cell sizes are small. 

5. Conclusions and Discussion 
It can now be stated that one no longer need 

use simple random sampling assumptions for analy- 
sing categorical data obtained from complex sam- 
ples. C<xxlness of fit test, log-linear model 
significance tests, and in general, any test whose 
null hypothesis can be formulated in terms of a 
linear contrast of cell proportions or logs of 
cell proportions can be analysed using techniques 
suggested by Grizzle, et al. These techniques re- 
quire that sample estimates of sample variances 
and covariances of the estimated cell proportions 
be available. In the event that such estimates 
are not available, either for lack of information 
or because of the size of the tables, reasonable 
procedures can be based on average design effects 
as suggested by Fellegi (1978) and modified by 
Rao and Scott (1979). If design effects are all 
close to one, ordinary simple random sample pro- 
cedures are probably good enough. 

With regards to research organizations, gov- 
ernments and other agencies responsible for pro- 
ducing data from surveys, two points seem rele- 
vant. First, in order to carry out proper analy- 
sis of contingency tables, it is necessary to 
have sample variances and if possible covariances. 
Since in order to compute these estimates, one 
must have PSU level data, this means that these 
agencies should either be prepared to release more 
data to data analysts (and deal with the confiden- 
tiality problems that this creates) or become more 
heavily involved in the analysis of such data. 

It should also be noted that the precision of 
variance estimates hasa large effect on inferen- 
tial analysis. If this type of analysis is a pri- 
mary goal of a survey, then providing adequately 
precise variance estimates should be considered 
when designing the sample. This is all too often 
ignored. 

A last, more serious problem which still re- 
quires research is that of estimating cell pro- 
portions for reduced models. Bishop, et al, dis- 
cuss the problem of predicting cell proportions 
once a reduced model has been fitted. Assunfung 
a simple random sample, one can use an iterative 
proportionate fitting algorithm to get maximum 
likelihood estimates for cell proportions under 
the reduced model. These can be useful for 
"smoothing" cell estimates and reducing sampling 
variance by in effect pooling information across 
cells. At this point there does not seem to be a 
way of doing this for data from complex samples. 

Footnotes 
I. This work was, for the most part, carried out 
whilethe author was employed by Statistics Canada. 
2. Rao and Scott (1979) in a paper to be present- 
ed to the ASA in August 1979, give a theoretical 
justification for a similar statistic which is the 
same in the case that all cell frequencies and/or 
all cell design effects are equal. The latter is 
the case for the empirical study which follows. 
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TABLE I TABLE II 

Unweighted sample totals and proportions of a 
classification of three separate measures of 
hypertens ion. (Absent and present refer to the 
cZ>sence or presence of hypertension. ) 

Weighted estimates of cell proportions of a 
cross classification of three separate measures 
of hypertension. 

INTERVIEW 
Physical Personal Absent Present 

Absent 

Present 

Absent 

Present 

Absent 

Present 

.838 
(399) 

053 
(25) 

.004 
(2) 

.034 
(16) 

424 18 

Absent Present 

I .032 
I (15) 

.013 
(6) 

i 

.002 
(i) 

.025 
(i2) 

401 

41 

442 

16 

18 

21 13 34 

INTERVIEW 
Physical Personal Absent Present 

Absent 

Present 

Ab sen t 

Present 

Ab sen t 

Present 

.851 

.052 

.003 

.029 

Absent Present 

.024 

.012 

.004 

.025 

TABLE III 

Hierarachical tests of parameters of the log-linear model for data given in 
Table II. 

Test Statistic 

Parameter 

Three way interaction 

ali three 
conditional two way 

inter actions 

conditional 
Phys i ca i- Interview 

interactions 

conditional 
Physical-Personal 

interactions 

cond i t iona 1 
Interview-Pers onal 

interactions 

after collapsing 
over the Interview 

variable 
Physical-Persona i 

Wald Statistic 
(null distribution) 

4~271 (FI, 3) NS 

58~384 (F3,3) *** 

SRS Statistic 
(nu II distributi on) 

3 44 (X 2 
• i ) * 

2 
90.130 (X 3) *** 

1.298 (FI,3) NS 

24.818 (F ) ** 
1,3 

7.294 (F ) * 
1,3 

35.894 (FI, 3) *** 

1 864 (X 2 . i) NS 

33. 952 (X21) *** 

14. 441 (X21) *** 

59. 772 (X~) *** 

NS indicates ~ot significant 

* .i0 level significance 

.05 level significance 

• 01 significance 
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DESIGN 2 N ominal Leve is 
TABLE IV 

EMPIRICAL RESULTS 

I000 Replicates 

DESIGN I. 100 clusters of size 100 selected with subsamples of size 20, total 
sample size of 2000. 

DESIGN 2. 10 clusters of size 100 selected with subsamples of size 20, total 
sample size of 200. 

DESIGN 3. 5 clusters of size 100 selected with subsamples of size 20, total 
sample size of 100. 

Statistic Distribution .i0 .05 .025 .01 .005 

~ 2(i) .116 .081 .053 ,034 .024 Wald 
{ F 1,9) .I00 .051 .031 .011 .005 

2 
~,Y I F X (i) .116 .063 .038 .018 .010 [ 

(1,9) .078 .035 .013 .002 .001 

X 2(I) .iii .079 .052 .025 .015 
Wald { F(I 9) .095 .050 .017 .006 .003 

X 2 (,i) .098 .048 . 022 .007 .005 
X { F(I 9) .071 .020 .007 .002 .001 

~X 2 (i) .138 .076 .045 .029 .019 Wald 
[ ~(1,9) .096 .043 .024 .009 .009 

2 
I,V S FX (i) .092 .056 .029 .012 .007 

[ 
(1,9) .069 .025 .009 .003 .001 

Table A Table B Table C 

• [- 25 

lliiJ . . . . . .  

[.25 .1875 .5625 

2 
Wald { FX (i) .081 .052 .026 .018 .013 

(1,9) .059 .026 .016 .007 .005 
2 

X { F X Ii) .077 .046 .027 .017 .016 
(i 9) .060 .026 . 016 .007 .004 

Intra-Class 
Tab le Correlation Deff 

A .3266 7.2281 

A .102132 2.97076 

B . 102132 2. 97076 

C . 00970 i. 21775 

DESIGN ] Nominal Levels DESIGN 3 Nominal Levels 

Statistic Distribution .i0 .05 .025 .01 .005 Statistic Distribution .i0 .05 .025 .01 .005 

2 (I) .199 .150 .112 .082 .069 
X2(1) .096 .053 .023 .011 .005 Wald { F~I~4) 123 .070 .035 .010 .005 

Wald { F(1,99) .092 .050 .021 .010 .004 

~X2 (i) .125 .083 .055 .023 .014 
X { ~x2 (i) .098 .054 .025 .010 .005 X { ~ (i, 4) .065 015 003 001 - 

r(1,99) .096 .050 .026 .010 .004 • • • 

x2(1) .161 .115 .083 .061 .051 
x2(1) .119 .060 .030 .017 .008 Wald { F (1,4) 095 053 026 .005 .001 

Wald { F(I ,99) .113 .055 .028 .017 .006 • " • 

. X 2 (, X { ~x2 (I) 119 .057 .028 .011 .008 X { i) .109 .062 .037 .021 .011 
(1,99) .113 .053 .025 .011 .006 F(I 4) .043 .013 .002 .001 - 

X 2 (i) . 117 . 059 . 027 . 009 . 003 Wald { F X2 (1) . 197 . 135 . i00 . 073 . 057 
Wald { F(1,99) .iii .055 .022 .009 .003 (1,4) .113 .059 .028 .008 .004 

2(1) .i17 .070 .040 .017 .010 
~X2 (I) .ii0 .053 .027 .009 .003 X { F~I,4) 049 .010 004 - - 

X { ~(1,99) .102 .049 .027 .008 .003 • • 

k 2 (I) . 134 .089 . 062 . 042 . 033 ~ 2(i) .098 .046 .023 .Oil .003 Wald { 
Wald { F 1,99) .095 .044 .023 .011 .003 F(I'4) .071 . 033 • 018 0004 . 003 

X 2 (I) .136 .085 . 060 . 029 .018 ~ 2(i) .094 .048 .025 .009 .006 X { F 
X { F 1,99) .090 . 045 . 024 .009 .006 (1,4) . 066 . 018 0004 


