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Exact small sample properties of the linear- 
ization, jackknife and balanced half-sample 
methods applied to ratio estimation in strati- 
fied samples are investigated under a suitable 
linear regression model. In particular, the 
bias of the classical combined ratio estimator 
is compared with that of two different jackknife 
estimators that have been proposed. In addition, 
the biases of the lindarization variance esti- 
mator and several alternative variance estimators 
based on the jackknife and balanced half-sample 
methods are evaluated. The stability of the 
linearization variance estimator is also compared 
with that of a particular balanced half-sample 
variance estimator. The analytical results 
reported here are compared with empirical results 
reported previously by other investigators. 

I. INTRODUCTION. Suppose (Yhi' Xhi ) (i=l ..... n h) 
denotes a simple random sample of size n h 
from the N h units in stratum h=l,...,L. Within 
stratum h, let y. and x. denote the stratum means 

h h . 
for variables y and x respectlvely and let Y. and 

denote the population means The overallhpop - h _ _ • 
ulation means are then Y=F~WhY h and Y(=gWhX h where 
Wh=N h/N and N=F.N h. 

The classical combined ratio estimator of 
R=~(/X is r.--y _ / x _  where y _=FW_y_ and x _=F.W~x~. 

important ± ~ sE s~ n n 1 sg L~," For the special case nh='2 (h ..... 
Jones' jackknife estimator r~(Joffes, 1974) and 
McCarthy's jackknife estimatoZr r (McCarthy, 1966) 

3 
are given by 

r2=(L+l)r I - F~r h and (i.i) 

r3=2rl- (Erh/L) (1.2) 

h . hl h2., hi 
respectively, where r. =Lr +r )/2 and r. 

I 1 1 
denotes the combined ratio estxmator omitting 

(Yhi, Xhi )- 

The linearization variance estimator of the 
mean square error of r, is 

v I (Xst)-2 {V(Yst)+r 2 - = 1 V(Xst)-2rc°V(Yst'Xst ) } 

L nh (I .3) 

where, for example, V(Yst)-Y.=iW2 F. (Yhi-Yh)2/ 
h i=l 

nha -i). When (h=l ..... L), a set of k balanced 
• zsamples may be formed (McCarthy, 1966)with 

C 
the estimators r.~r~ and rl ~I" associated with 
the ith half-sam~16 )and its(e6mplement (i=l ..... k)- 
Three alternative balanced half-sample variance 
estimators are then given by 

v2=E(rl (i)-rl) 2/k, (1.4) 

- r  )2/k  (1.5) 
v3=E(rl (i) i(.) 

c 2/ 
-r ) (4k) (1.6) v4=F~ (rl (i) l(i) 

where r l(.)=Er(i)/k" When all nh=2, two jackknife 

variance estimators proposed by Jones (1974) and 
Kish & Frankel (1974) are given by 

v5=EF, hi h 2 Lrl-r I) /2 and (1.7) 

v6=F'F' (rhi-rl) 2/2. (1.8) 

Exact small sample properties of these 
estimators may be obtained in the case of propor- 
tional allocation (n =Whn ) under the linear 
regression model (Ra h &"Ramachandran, 1974) 

Yhi- ~+ @hXhi +ehi, (I. 9) 

E(ehi lXhi)=0,  E(e 2 th 
hi I Xhi )=~hxh ' 

E (ehiehj IXhiXhj) =0 (i,j) 

E (ehieh, j IXhiXh,j) =0 (h*h ') 

i,!=l, .... nh;h,h,= 1 ..... L) where Xhi has a gamma 
istrlbution with mean a h. For a variety of 

natural and synthetic populations Rao & Kuzik 
(1974) found the coefficient of variation of the 
auxiliary variable x,. to lie between 0 4 and 1 0 

t . . 1 . . . .  Since he coefflclen~ of variation of ~. is 
a,-~, small value of a~ will be of inten~st in 
w~at follows. In practice, t h has often been 
found to lie between 0 and 2 and is assumed here 
to lie in this range. For simplicity, it will 
be assumed that the strata sizes {N h} are effec- 
tively infinite. 

Derivations of the analytical results 
presented here are similar to those of Rao & 
Webster (1966) and Rao (1974) and are omitted. 
Further details of the results summarized here 
may be found in Krewski (1977). 

2. Bias of ratio estimators. Under the model 
(1.9) with proportional allocation, the bias of 
the combined ratio estimator r I may be expressed 
as 

B(rl) =E (rl)-R 

n-~ 
_ 

re(m-l) 

=Dl% ' (2.1) 

provided re>l, where m=Fmh, mh=nha h and 7x=-En h ~ / n .  

For the spec ia l  case n. =2 (h=l,  ,L) ,  the " ' "  

biases  of the  j ackkn i f e  r a t i o  e s t ima to r s  r_ and 
2 r_ may a lso  be eva lua ted  under (1.9) with propor-  

t i o n a l  a l l o c a t i o n .  Assuming a~=a (h=l . . . . .  L) 
so t h a t  B(r)) and B(r~) do noC'depend on the @h' 
the b ia ses  6f these  t#o e s t ima to r s  may be exprgssed 
a s  

1 L 
B(r2)=n{m(m'l'j + (m-i) L i ( b , a ; 2 ) } ~  

=D2-~ and 

4L 
B (r3) = {(m- 1 ~  

-D3~ 

2LI (b ,a ;  2) }-~ 

(2.2) 

(2.3) 

1o9 



provided m>l. Here b=2a(L-l) and I(a.,a~;X) 
=E(21+XX~)-I where ~>0 (X,I) and X 1 a~d ~9 are 
independent gamma variates with meRns a. ~nd a~ 

1 Z 
respectively. This expectation is evaluated 
explicitly in the following Theorem. 

Theorem. Let X 1 and X 2 be independent gamma 
variates with means a and b respectively. Then 
for any positive constant X*l and integral values 
of a and b 

-i 
1 (a, b ;)k) =E (X 1 +XX2) 

_ I ( 1 ) + I ( 2 ) + i  (3) 

where 
a-i 

i (1 )=  7, (_ l )k+ l  xk-1 F(b+k-1) F ( a - k ) ,  
k=l F(b) F(a) 

i (2 )_(_1)a+1  )~a-1 F(b+a-1) 
F(b) F(a)  

b+a- 2 k+ l  
Z . . . . . . . .  ( - 1 )  . . and 

k=l ()~'-1) k (b+a-k- 1 

i(3)_(_l)b+l xa-i r(b+a-l) gnX . 
F(b) F(a) ()~_ 1)b+a- 1 

Since the expressions for the coefficients 
D_ and D are not in closed form, the biases of 
t~e thre 3 alternative ratio estimators were 
compared by evaluating these coefficients for 
selected values of a and L (Table i). While 
both jackknife estimators have smaller absolute 
bias than the classical estimator, r_ appears 
particularly effective as a means of Zbias 
reduction in this case while the bias of r 3 
approaches that of r I as L increases. 

Where Bh=~ (h=l .... ,L), the biases of both 
jackknife eszimators do not depend on ~, regard- 
less of the value of the a.. When both the a_ 
and B h are not constant, however,h the biases 
both rp and r x will in general involve the ~h" 
In thig case B(r2) = LB(r3) for -c~0. "" 

Thus while r may be preferable to r_ with 
' 2 

respect to bias when the a. are constant (~able I) 
II - 

r may be preferable to r when o~0 and the a_ 
3 2 (h 

and $ h are not constant. Further, B(rl)=0 when 
-~--0 ~Ohile both r and r_ will in general be 

2 3 
biased in the case of unequal a h and B h. 

3. Bias of variance estimators. The mean square 
error of the combined ratio estimator under the 
model (1.9) with proportional allocation is given 

by 2 
MSE(rl)=n (m+2) -a 2 mh(gh-~) 2 

(m-l)(m'2i_, + 7. ' m(m+l) 
m 

nh fh(th) dh (3.1) 
+ 

(m+th- I) (m+th- 2) 

provided m>2, where ~=r.mhBh/m and 
fh (t) =F (ah+t)/F (ah) " 

After considerable algebra the bias of the 
linearization variance estimator under (1.9) with 
proportional allocation may be expressed as 

B(Vl)= E(Vl)-blSE(r 1) 

2 7x2 3Emh (Bh- ~)2 
n (3m+2) 

=- 2 2 .... m(m+l) (m+3) 
m (m -i) (m-2) (3.2) 

tZn +th (2m+l) - m) 6 h 
/% 

_ F n(m+th+ l ) h  fh (th)(m+th) ((m+th-I) (m+th- 2) 

provided m>2. Similarly, after some tedious 
algebra, the biases of the balanced half-sample 
variance estimators v 2 and v 4 may be expressed 
as 

2n 2 (m+ 2) (3m-4) -2 
B(v2) : 2 2 m (m-l) (m-2) (m-4) 

fh (th) 6h 1 1 
+ 4 ? .  {, - 

(m+2th-2) (m+2th-4) (m+th-2) 

and (3.3) 

2 
B(v4)-n2 (3m2+4m- 16)-a22 - F. mh(Bh-~) 2 

m (m-l) (m-2) (m-4) m(m+l) (m+2) 

+ 2 r. fh(th)~h{ 1 
(m+ 2t h- 2 ) (m+ 2th-4 ) 

i ) 
- (m+th-l) (m+th-2) (3.4) 

provided m>4. 

From (3.2), it is easily seen that B(vl)>0 
when ti>i/2 for all h. From (3.3), B(v~)_>0~when 
t. <2 for all h. From (3.4), B(va)>0 w~en 
th-~3/2 and Bh=$ for all h, provid6d m>5. 

Comparing (3.2) - (3.4) when nh=2 and Bh=B 
for all h shows B(v~)>B(va)>0 when ~ii th<3 /2 
and B(V2)>B_(v4)>IB(~I) I when all t. =I (provided 
m>_5), eor c~u and n. 2 for all h, ~ 
IB(Vl) l>[B(v4)[>B(v2~=0 when all th=2. 

In the special case n. =2, ah=a , Bh=B and 
th=t for all h, the biaseshof the jackI{n~fe 
variance estimators v and v may be expressed as 
B(v.)=F.~2+H.6, (i=5,~), whe6e 6=F~6,/L. As in 

I i 
(2.}) and (2.3), however, the coefficients F. 
and H. (i=5,6) are not in closed form. If alset 
of k ~alanced replicates is constructed with the 
properties that (i) the number of observations 
common to each pair of half-samples is constant 
and (ii) each observation is included in 
precisely half of the half-samples, then_the, bias 
of v_ may also be expressed as B(v3)=F3-~+H3 ~, 
although the expressions for F 3 ana H 3 are again 
not in closed form. 

From (3.2) - (3.4), the biases of v I, v 2 and 
v 4 may al~o be expressed as 
B(v.)=F.-~+H.~ (i=1,2,4) in the case n -2 a =a 
B, =~ an~ t. =~ for al h " h ' 1 h. Since the expressions 
fnor B(v.) ~i=3,5,6) are not in closed form, the 
biases 6f the six alternative variance estimators 
considered here were compared for selected values 
of a and L and for t=0, 1 and 2. 
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This analysis indicated that B(Vl)=0 when 
t=l or 2 as indicated earlier. Both jackknife 
variance estimators v 5 and v. also underestimate 
MSE(r~) when t=l or 2 and L>~ with 
IB(v1~ I > IB(v5) I > IB(v6) I in this case. For 
t~3/2, it was shown prevlously that v~ and v. are 

• Z 4 

both overestimates. The present analysis showed 
that v_ is also an overestimate when t=0 or 1 with 
B(v2)>~(v3)>B(v4) in this case. When t--l, 

B(v2)>B(vx)>B(v4)>lB(Vl ) l  >lB(vs)  l >lB(v6) l 
p r o v i d e d  E>4. 

When in  a d d i t i o n  -c~O, i t  was found t h a t  a l l  
six variance estimators overestimate MSE(r I) for 
t=O wi th  B(v )>B(v )>B(v )>B(v )>B(v )>B(v~)o 

2 4 6 5 For t=2,  a l l  s i x  v ~ r i a n c e  e s t i m a t o r s  a re  unde r -  
e s t i m a t o r s  when ~ 0  wi th  the  a b s o l u t e  b i a s e s  
f o l l o w i n g  the  r e v e r s e  o r d e r  to  t h a t  fo r  t=O. 

4. S t a b i l i t y  . o f  v a r i a n c e  e s t i m a t o r s .  The 
mean square  e r r o r  o f  t he  l i n e a r i z a t i o n  v a r i a n c e  
e s t i m a t o r  v. and the  b a l a n c e d  h a l f - s a m p l e  
v a r i a n c e  e s t i m a t o r  v 2 may be d e r i v e d  under  (1 .9)  
with normally distributed errors and propor- 
tional allocation in the special case n =2, 
ah=a , @h=B, th=t and 6 =6 for all h. A~ter 
considerable algebra, ~he mean square errors 
of these two variance estimators may be expressed 
as 

MSE(vi) = Ji~4+K.~26+L 62 
i i (4.1) 

(i=1,2), provided that the set of k balanced 
half-samples is selected so that the number of 
observations common to each pair is constant. 

Since the expressions for J., K. and L. 
) are not in closed form, these (i=1,2) in (4.1 i i i 

coefficients were evaluated for selected values 
of a and L and for t=0, 1 and 2. (The results in 
the case of L., for example, are shown in 
Table 2.) I 

Each of the coefficients J., K. and L. 
1 . 1 

(i=1,2) was found to decrease a~ L or a increase 
so' that the mean square errors of both variance 
estimators decrease as the number of strata 
increase or as the coefficient of variation of 
the x population decreases. Since J.<J~,l z KI<KI 2 
and L4<L~ for all values of a, L and t, v I Is 
more Ista~le than v?. The ratios J~/J], K~/K] 
and L2/L 1 all decr6ase, however, ag L-or g - 
increase. The ratio L2/L 1 is particularly close 
to one for moderate values of La, indicating 
that the stability of v^ is comparable to that 
of v I when -c~0. Since ~7/L] decreases as t 

Y2~ decreases as t increases, MSE ( / (MSE (Vl) 
increases when 

5. Discussion. In contrast to the case of 
simple random sampling (Rao & Webster, 1966), 
results concerning the jackknife method as a 
means of bias reduction in stratified samples 
are not clearcut. When the distribution of the 
x population is the same in all strata, r 2 is 
particularly effective as a means of bias 
reduction while the bias of r_ is comparable to 
that of the combined ratio estimator r. for 
moderate values of L. When the distribution of 
the x population is not the same in all strata, 

however, r_ can have smaller absolute bias than 
b 

r_. Moreover, both jackknife estimators may be 
Z 

biased in situations where the classical 
estimator is unbiased. 

When th>_i/2 in each stratum h, the lineari- 
zation variance estimator v I underestimat~ the 
mean square error of the combined ratio estimator. 
When th_<2 in each stratum h, the balanced half- 
sample variance estimator v 2 is an overestimate. 

Further results on the biases of the alter- 

native variance estimators considered here may be 

obtained under some simpliying assumptions for 
the important case nh=2 (h=l ..... L). When the 
distribution of the x population and the slopes 
k~n are the same in each stratum h, both jack- 

ife variance estimators v 5 and v. tend to 
underestimate MSE(r]) for th=t=l o~ 2. When 
th=t=0 or i, the three balanced half-sample 
variance estimators are all ov~estimates. 

Under the assumption that all parameters in 
(1.9) are the same in each stratum h (with the 
exception of the intercepts ~), the mean 
square error of v. was found~o be less than 

1 
that of the balanced half-sample variance 
estimator v_, although the two variance estimators 

z 
are of somewhat comparable stability when ~0 
provided L is moderately large or the coefficient 
of variation of the x population is relatively 
small. (Results on the stabilities of the 
remaining variance estimators could not be 
obtained.) 

In an empirical study using data from the 
Current Population Survey, Kish & Frankel (1974) 
found that for a variety of nonlinear statistics 
the variance estimators based on the balanced 
half/sample technique were less stable than those 
based on the jackknife method, which in turn 
were less stable than the linearization variance 
estimator, although the differences encountered 
were small. Related studies by Bean (1975) and 
Lemeshow & Levy (1978) have subsequently con- 
firmed this finding in the special case of ratio 
estimation. On the basis of the present 
analysis, Kish & Frankel's finding may be 
attributable to regression approximately through 
the origin and the small coefficients of 
variation (0.076 - 0.19) of the x populations 
involved. The models employed by Lemeshow & 
Levy (1978) were in fact limited to the case of 
regression through the origin with the coefficients 
of variation of the x populations in the range 
0.01 - 0.3. 
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Table i. Coefficients D.I in B(ri%,,, i=1,2,3 

(original values multiplied by i000) 

10 

11 

12 

a= l  

D]. D 2 D 3 

333 -90 121 

200 -13 129 

143 -1.8 107 

iii 0.9 89 

91 1.6 76 

77 1.6 66 

67 1.5 59 

59 1.4 52 

53 1.3 47 

48 1 .i 43 

43 1.0 40 

a=2 

D 1 D 2 D 3 

71 -6.7 32 

45 -.78 30 

33 .13 25 

26 .30 21 

22 .31 18 

19 .28 16 

16 .24 14 

14 .21 13 

13 .19 12 

12 .16 ii 

ii .14 I0 

D 1 

30 

20 

14 

ii 

9.5 

8.1 

7.1 

6.3 

5.6 

5.1 

4.7 

a=3 

D 2 

-1.7 

-.15 

.07 

.ii 

.i0 

.09 

.08 

.07 

.06 

.04 

D 
3 

14 

13 

ii 

9.2 

8.0 

7.0 

6.2 

5.6 

5.1 

4.7 

* Values obtained are not accurate 
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Table 2. Coefficients L. in MSE(vi), i=1,2 
1 

(original values multiplied by 106 ) 

ii 

12 0 
i 

1 2 

0 
1 
2 

0 
1 
2 

a-i a=2 

L 1 

555714 ** 
40476 ** 
54374 ** 

99495 ** 
15584 ** 
30212 ** 

5438 28070 
6753 14196 

36635 56518 

1683 
2781 

18634 

5365 
5587 

30142 

L 1 L 2 

632 
2643 

30715 

220 
1103 

14890 

a=3 

L 2 

1437 
4283 

42734 

429 
1767 

21350 

7717 25421 
2677 5016 
8845 12944 

4534 13162 
1776 3389 
6482 9883 

217 340 
508 697 

4602 5814 

137 213 
339 476 

3247 4205 

1370 2504 
672 996 

3006 3939 

i001 1824 
516 787 

2421 3254 

47 61 
130 159 

1387 1626 

35 46 
i00 125 

1094 1305 

32 
204 

3393 

43 
252 

4024 

21 
136 

2356 

28 
172 

2846 

7 
52 

973 

6 
40 

762 

* Values obtained are not accurate. 

** Not defined for La _< 4. 
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