D. Krewski and J.N.K. Rao

Health \& Welfare Canada and Carleton University

Exact small sample properties of the linearization, jackknife and balanced half-sample methods applied to ratio estimation in stratified samples are investigated under a suitable linear regression model. In particular, the bias of the classical combined ratio estimator is compared with that of two different jackknife estimators that have been proposed. In addition, the biases of the linearization variance estimator and several alternative variance estimators based on the jackknife and balanced half-sample methods are evaluated. The stability of the linearization variance estimator is also compared with that of a particular balanced half-sample variance estimator. The analytical results reported here are compared with empirical results reported previously by other investigators.

1. INTRODUCTION. Suppose $\left(y_{h i}, x_{h i}\right)\left(i=1, \ldots, n_{h}\right)$ denotes a simple random sample of size n_{h} from the N_{h} units in stratumn $h=1, \ldots, L$. Within stratum $h,{ }^{h}$ let \bar{y}_{h} and \bar{x}_{h} denote the stratum means for variables y and x respectively and let \bar{Y}_{h} and \bar{X}_{h} denote the population means. The overall h_{p} population means are then $\bar{Y}=\sum W_{h} \bar{Y}_{h}$ and $\bar{X}=\sum W_{h} \bar{X}_{h}$ where $W_{h}=N_{h} / N$ and $N=\sum N_{h}$.

The classical combined ratio estimator of $R=\bar{Y} / \bar{X}$ is $r_{1}=\bar{y}_{s t} / \bar{x}_{s t}$ where $\bar{y}_{s t}=\sum W_{h} \bar{y}_{h}$ and $\bar{x}_{s t}=\sum W_{h} \bar{x}_{h}$. For the important st special căse $n_{h}=2$ (h $1, \ldots$, , L), Jones' jackknife estimator r_{2} (Jones, 1974) and McCarthy's jackknife estimator r_{3} (McCarthy, 1966) are given by

$$
\begin{align*}
& r_{2}=(\mathrm{L}+1) \mathrm{r}_{1}-\Sigma \mathrm{r}_{1}^{\mathrm{h}} \text { and } \tag{1.1}\\
& \mathrm{r}_{3}=2 \mathrm{r}_{1}-\left(\Sigma \mathrm{r}_{1}^{\mathrm{h}} / \mathrm{L}\right) \tag{1.2}
\end{align*}
$$

respectively, where $\mathrm{r}^{\mathrm{h}}=\left(\mathrm{r}_{1}^{\mathrm{h} 1}+\mathrm{r}_{1}^{\mathrm{h} 2}\right) / 2$ and r_{hi}
denotes the combined ratio estimator omit ing $\left(y_{h i}, x_{h i}\right)$.

The linearization variance estimator of the mean square error of r, is

$$
v_{1}=\left(\bar{x}_{s t}\right)^{-2}\left\{v\left(\bar{y}_{s t}\right)+r_{1}^{2} v\left(\bar{x}_{s t}\right)-2 r \operatorname{cov}\left(\bar{y}_{s t}, \bar{x}_{s t}\right)\right\}
$$

where, for example, $v\left(\bar{y}_{s t}\right)=\sum_{h=1}^{L} W_{h}^{2} \sum_{i=1}^{n_{h}}\left(y_{h i}-\bar{y}_{h}\right)^{2} /$ $n_{h}\left(n_{h}-1\right)$. When $(h=1, \ldots, L)$, a set of k balanced half ${ }^{h}$ samples may be formed (McCarthy, 1966) with the estimators $r_{1 \text { (i) }}$ and $r_{1}^{c}(i)$ associated with the ith half-sampfe and its (i) i (i mplement ($i=1, \ldots, k$). Three alternative balanced half-sample variance estimators are then given by

$$
\begin{align*}
& v_{2}=\sum\left(r_{1(i)^{-r}}\right)^{2} / k \tag{1.4}\\
& v_{3}=\sum\left(r_{1(i)^{-r}}^{1(.)^{2}}\right)^{2} / k \tag{1.5}\\
& v_{4}=\sum\left(r_{1(i)^{-r}}^{c} 1(i)^{2} /(4 k)\right. \tag{1.6}
\end{align*}
$$

where $r_{1(.)}=\Sigma r_{(i)} / k$. When all $n_{h}=2$, two jackknife
variance estimators proposed by Jones (1974) and Kish \& Frankel (1974) are given by

$$
\begin{align*}
& v_{5}=\sum \sum\left(\mathrm{r}_{1}^{\mathrm{h}}-\mathrm{r}_{1}^{\mathrm{h}}\right)^{2} / 2 \text { and } \tag{1.7}\\
& v_{6}=\sum \sum\left(\mathrm{r}_{1}^{\mathrm{hi}}-\mathrm{r}_{1}\right)^{2} / 2 \tag{1.8}
\end{align*}
$$

Exact small sample properties of these estimators may be obtained in the case of proportional allocation $\left(n_{h}=W_{h} n\right)$ under the linear regression model (Rao ${ }_{q} h_{\text {Ramachandran, 1974) }}$

$$
\begin{aligned}
& y_{h i}=q_{h}+\beta_{h} x_{h i}+e_{h i}, \\
& E\left(e_{h i} \mid x_{h i}\right)=0, E\left(e_{h i}^{2} \mid x_{h i}\right)=\delta_{h x_{h}}{ }^{t_{h}}, \\
& E\left(e_{h i} e_{h j} \mid x_{h i} x_{h j}\right)=0 \quad(i \neq j) \\
& E\left(e_{h i} e_{h \prime j} \mid x_{h i} x_{h}{ }^{\prime} j\right)=0 \quad\left(h \neq h^{\prime}\right)
\end{aligned}
$$

($i, j=1, \ldots, n_{h} ; h, h^{\prime}=1, \ldots, L$) where $x_{h i}$ has a gamma distribution with mean a_{h}. For a variety of natural and synthetic populations Rao \& Kuzik (1974). found the coefficient of variation of the auxiliary variable $x_{h i}$ to lie between 0.4 and 1.0 . Since the coefficient of variation of $x_{h i}$ is $a_{h^{-\frac{1}{2}}}$, small value of a_{h} will be of interiest in what follows. In practice, t has often been found to lie between 0 and 2 hand is assumed here to 1 ie in this range. For simplicity, it will be assumed that the strata sizes $\left\{N_{h}\right\}$ are effectively infinite.

Derivations of the analytical results presented here are similar to those of Rao G Webster (1966) and Rao (1974) and are omitted. Further details of the results summarized here may be found in Krewski (1977).
2. Bias of ratio estimators. Under the model (1.9) with proportional allocation, the bias of the combined ratio estimator r_{1} may be expressed as

$$
\begin{align*}
\mathrm{B}\left(\mathrm{r}_{1}\right) & =\mathrm{E}\left(r_{1}\right)-R \\
& =\frac{\mathrm{n}^{-\alpha}}{\mathrm{m}(\mathrm{~m}-1)} \\
& =\mathrm{D}_{1} \bar{\alpha} \tag{2.1}
\end{align*}
$$

provided $m>1$, where $m=\sum m_{h}, m_{h}=n_{h} a_{h}$ and $\bar{\alpha}^{\alpha}=\sum n_{h} q_{h} / n$.
For the special case $n_{h}=2(h=1, \ldots, L)$, the biases of the jackknife ratho estimators r_{2} and r_{3} may also be evaluated under (1.9) with proportional allocation. Assuming $a_{i=}=a(h=1, \ldots, L)$ so that $B\left(r_{2}\right)$ and $B\left(r_{3}\right)$ do not ${ }^{h}$ depend on the β_{h}, the biases of these two estimators may be expressed as

$$
\begin{align*}
B\left(r_{2}\right) & =n\left\{\frac{1}{m(m-1)}+\frac{L}{(m-1)}-\operatorname{LI}(b, a ; 2)\right\} \alpha \\
& =D_{2}^{-\alpha} \text { and } \tag{2.2}\\
B\left(r_{3}\right) & =\left\{\frac{4 L}{(m-1)}-\frac{n}{m}-2 \operatorname{LI}(b, a ; 2)\right\}^{-\alpha} \\
& =D_{3}^{-\alpha} \tag{2.3}
\end{align*}
$$

provided $m>1$. Here $b=2 a(L-1)$ and $I\left(a_{1}, a_{2} ; \lambda\right)$ $=E\left(X_{1}+\lambda X_{2}\right)^{-1}$ where $\lambda>0(\lambda \neq 1)$ and X_{1} and \hat{X}_{2} are independent gamma variates with means a_{1} and a_{2} respectively. This expectation is evaluated explicitly in the following Theorem.

Theorem. Let X_{1} and X_{2} be independent gamma variates with means a and b respectively. Then for any positive constant $\lambda \neq 1$ and integral values of a and b

$$
\begin{aligned}
1(a, b ; \lambda) & =E\left(X_{1}+\lambda X_{2}\right)^{-1} \\
& =I^{(1)}++_{I}(2)+{ }_{I}(3)
\end{aligned}
$$

where

$$
\begin{aligned}
& I^{(1)}=\sum_{k=1}^{a-1}(-1)^{k+1} \lambda^{k-1} \frac{\Gamma(b+k-1)}{\Gamma(b)} \frac{\Gamma(a-k)}{\Gamma(a)}, \\
& I^{(2)}=(-1)^{a+1} \lambda^{a-1} \frac{\Gamma(b+a-1)}{\Gamma(b) \Gamma(a)} \\
& \sum_{k=1}^{b+a-2} \frac{(-1)^{k+1}}{(\lambda-1)^{k(b+a-k-1}} \text { and } \\
& I^{(3)}=(-1)^{b+1} \lambda^{a-1} \frac{\Gamma(b+a-1)}{\Gamma(b) \Gamma(a)} \frac{\ln \lambda}{(\lambda-1)^{b+a-1}} .
\end{aligned}
$$

Since the expressions for the coefficients D_{2} and D_{3} are not in closed form, the biases of the three alternative ratio estimators were compared by evaluating these coefficients for selected values of a and L (Table 1). While both jackknife estimators have smaller absolute bias than the classical estimator, r_{2} appears particularly effective as a means of bias reduction in this case while the bias of r_{3} approaches that of r_{1} as L increases.

Where $\beta_{h}=\beta$ ($h=1, \ldots, L$), the biases of both jackknife estimators do not depend on β, regardless of the value of the a_{h}. When both the a_{h} and β_{h} are not constant, however, the biases both r_{2} and r_{3} will in general involve the β_{h}. In this case $\bar{B}\left(r_{2}\right)=\operatorname{LB}\left(r_{3}\right)$ for $\overline{0}=0$.

Thus, while r, may be preferable to r_{z} with respect to bias when the a_{h} are constant (Table l), r_{3} may be preferable to $r_{2}{ }^{h}$ when $\sigma_{0}=0$ and the a_{h} and β_{h} are not constant. Further, $B\left(r_{1}\right)=0$ when $\bar{\alpha}=0$ hhile both r_{2} and r_{3} will in general be biased in the case of unequal a_{h} and β_{h}.
3. Bias of variance estimators. The mean square error of the combined ratio estimator under the model (1.9) with proportional allocation is given by

$$
\begin{align*}
\operatorname{MSE}\left(r_{1}\right) & =\frac{n^{2}(m+2)-2}{m^{2}(m-1)(m-2)}+\sum \frac{m_{h}\left(\beta_{h}-\bar{\beta}\right)^{2}}{m(m+1)} \\
& +\sum \frac{n_{h} f_{h}\left(t_{h}\right) \delta_{h}}{\left(m+t_{h}-1\right)\left(m+t_{h}-2\right)} \tag{3.1}
\end{align*}
$$

provided $m>2$, where $\bar{\beta}=\sum_{h} \beta_{h} / m$ and $f_{h}(t)=\Gamma\left(a_{h}+t\right) / \Gamma\left(a_{h}\right)$.

After considerable algebra the bias of the linearization variance estimator under (1.9) with proportional allocation may be expressed as

$$
\begin{align*}
& B\left(v_{1}\right)= E\left(v_{1}\right)-\operatorname{MSE}\left(r_{1}\right) \\
&=-\frac{n^{2}(3 m+2) a^{2}}{m^{2}\left(m^{2}-1\right)(m-2)}-\frac{3 \sum m_{h}\left(\beta_{h}-\bar{B}\right)^{2}}{m(m+1)(m+3)} \tag{3.2}\\
&\left.-\sum \frac{n_{h} f_{h}\left(t_{h}\right)\left(t_{h}^{2}+t_{h}\right.}{\left(m_{+} t_{h}+1\right)\left(m+t_{h}\right)}(m+1)-m\right) \delta_{h} \\
&\left(m+t_{h}-1\right)\left(m+t_{h}-2\right)
\end{align*}
$$

provided $\mathrm{m}>2$. Similarly, after some tedious algebra, the biases of the balanced half-sample variance estimators v_{2} and v_{4} may be expressed as

$$
\begin{align*}
B\left(v_{2}\right) & =\frac{2 n^{2}(m+2)(3 m-4) 0^{-2}}{m^{2}(m-1)(m-2)^{2}(m-4)} \\
& +4 \Sigma \frac{f_{h}\left(t_{h}\right) \delta_{h}}{\left(m+2 t_{h}-2\right)}\left\{\frac{1}{\left(m+2 t_{h}-4\right)}-\frac{1}{\left(m+t_{h}-2\right)}\right\} \\
& \text { and } \\
B\left(v_{4}\right) & =\frac{n^{2}\left(3 m^{2}+4 m-16\right)^{-2}}{m^{2}(m-1)(m-2)^{2}(m-4)}-\frac{\sum m_{h}\left(\beta_{h}-\bar{\beta}\right)^{2}}{m(m+1)(m+2)} \\
& +2 \sum f_{h}\left(t_{h}\right) \delta_{h}\left\{\frac{1}{\left(m+2 t_{h}-2\right)\left(m+2 t_{h}-4\right)}\right. \\
& \left.-\frac{1}{\left(m+t_{h}-1\right)\left(m+t_{h}-2\right)}\right\} \tag{3.4}
\end{align*}
$$

provided $m>4$.
From (3.2), it is easily seen that $B\left(v_{1}\right)>0$ when $t_{2} \geq 1 / 2$ for all h. From (3.3), $B\left(v_{2}\right) \geq 0$ when $t_{h} \leq 2$ for all h. From (3.4), $B\left(v_{4}\right) \geq 0$ when $t_{h} \leq 3 / 2$ and $\beta_{h}=\beta$ for all h, provided $m \geq 5$.

Comparing (3.2) - (3.4) when $n_{h}=2$ and $\beta_{h}=\beta$ for all h shows $B\left(v_{2}\right)>B\left(v_{4}\right)>0$ when $h_{11} t_{h} \leq 3 / 2$ and $B\left(v_{2}\right)>B\left(v_{4}\right)>\left|B\left(v_{1}\right)\right|$ when all $t_{h}=1$ (provided $m \geq 5$). For $\mathrm{m}=0$ and $\mathrm{n}_{\mathrm{h}} 2$ for all h , h $\left|B\left(v_{1}\right)\right|>\left|B\left(v_{4}\right)\right|>B\left(v_{2}\right)^{h}=0$ when all $t_{h}=2$.

In the special case $n_{h}=2, a_{h}=a, \beta_{h}=\beta$ and $t_{h}=t$ for all h, the biases of the jackknjfe variance estimators v_{5} and v_{6} may be expressed as $B\left(v_{i}\right)=F_{i} \bar{\alpha}^{2}+H_{i} \bar{\delta}, \quad(i=5, b)$, where $\bar{\delta}=\Sigma \delta_{h} / L$. As in (2.2) and (2.3), however, the coefficients F_{i} and $H_{i} \quad(i=5,6)$ are not in closed form. If a set of k balanced replicates is constructed with the properties that (i) the number of observations common to each pair of half-samples is constant and (ii) each observation is included in precisely half of the half-samples, then the bias of v_{3} may also be expressed as $B\left(v_{3}\right)=F_{3}^{-2}+H_{3} \delta$, although the expressions for F_{3} and $\mathrm{H}_{3}{ }^{3}$ are again not in closed form.

From (3.2) - (3.4), the biases of v_{1}, v_{2} and v may also be expressed as
$B^{4}\left(v_{i}\right)=F_{i}-2+H_{j} \bar{\delta}(i=1,2,4)$ in the case $n_{h}=2, a_{h}=a$, $\beta_{h}=\dot{B}$ and $t_{h}=\dot{\epsilon}$ for all h. Since the expressions for $B\left(v_{j}\right)(i=3,5,6)$ are not in closed form, the biases íf the six alternative variance estimators considered here were compared for selected values of a and L and for $t=0,1$ and 2 .

This analysis indicated that $B\left(v_{1}\right)=0$ when $t=1$ or 2 as indicated earlier. Both Jackknife variance estimators v_{5} and v_{6} also underestimate $\operatorname{MSE}\left(r_{1}\right)$ when $t=1$ or 2^{5} and $L>8$ with $\left|B\left(v_{1}\right)\right|>\left|B\left(v_{5}\right)\right|>\left|B\left(v_{6}\right)\right|$ in this case. For $t \leq 3 / 2$, it was shown previously that v_{2} and v_{4} are both overestimates. The present analysis showed that v_{3} is also an overestimate when $t=0$ or 1 with $B\left(v_{2}\right)>B\left(v_{3}\right)>B\left(v_{4}\right)$ in this case. When $t=1$, $B\left(v_{2}^{2}\right)>B\left(v_{3}^{3}\right)>B\left(v_{4}^{4}\right)>\left|B\left(v_{1}\right)\right|>\left|B\left(v_{5}\right)\right|>\left|B\left(v_{6}\right)\right|$ provided $\mathrm{L}>4$.

When in addition $\mathrm{o}=0$, it was found that all six variance estimators overestimate $\operatorname{MSE}\left(r_{1}\right)$ for $t=0$ with $B\left(v_{2}\right)>B\left(v_{3}\right)>B\left(v_{4}\right)>B\left(v_{6}\right)>B\left(v_{5}\right)>B\left(v_{1}^{1}\right)$. For $t=2$, all six variance estimators are underestimators when $\bar{\sigma}=0$ with the absolute biases following the reverse order to that for $t=0$.
4. Stability of variance estimators. The mean square error of the linearization variance estimator v_{1} and the balanced half-sample variance estimator v may be derived under (1.9) with normally distributed errors and proportional allocation in the special case $n_{h}=2$, $a_{h}=a, \beta_{h}=\beta, t_{h}=t$ and $\delta_{h}=\delta$ for all h. After considerable algebra, the mean square errors of these two variance estimators may be expressed as

$$
\begin{equation*}
\operatorname{MSE}\left(v_{i}\right)=J_{i}{ }^{-4}+K_{i} \bar{\alpha}^{2} \delta+L_{i} \delta^{2} \tag{4.1}
\end{equation*}
$$

($i=1,2$), provided that the set of k balanced half-samples is selected so that the number of observations common to each pair is constant.

Since the expressions for $J_{\dot{i}}, K_{i}$ and L_{i} ($i=1,2$) in (4.1) are not in closed form, these coefficients were evaluated for selected values of a and L and for $t=0,1$ and 2 . (The results in the case of L_{i}, for example, are shown in Table 2.)

Each of the coefficients J_{i}, K_{i} and L_{i} $(i=1,2)$ was found to decrease $a^{\frac{1}{s}}$ L or a increase so that the mean square errors of both variance estimators decrease as the number of strata increase or as the coefficient of variation of the x population decreases. Since $J_{1}<J_{2}, K_{1}<K_{2}$ and $L_{1}<L_{2}$ for all values of a, L and $t,{ }^{1} v_{1}$ is more stable than v_{2}. The ratios $\mathrm{J}_{2} / \mathrm{J}_{1}, \mathrm{~K}_{2}^{1} / \mathrm{K}_{1}$ and L_{2} / L_{1} all decrease, however, as $L_{\text {or a }}$ a increase. The ratio L_{2} / L_{1} is particularly close to one for moderate vaiues of La, indicating that the stability of v_{2} is comparable to that of v_{1} when ${ }_{0}=0$. Since E_{2} / L_{1} decreases as t increases, $\operatorname{MSE}\left(\mathrm{v}_{2}\right) /\left(\operatorname{MSE}\left(\mathrm{v}_{1}\right)\right.$ decreases as t increases when 0 .
5. Discussion. In contrast to the case of simple random sampling (Rao \mathcal{G}_{G} Webster, 1966), results concerning the jackknife method as a means of bias reduction in stratified samples are not clearcut. When the distribution of the x population is the same in all strata, r_{2} is particularly effective as a means of bias ${ }^{2}$ reduction while the bias of r_{3} is comparable to that of the combined ratio estimator r for moderate values of L. When the distribution of the x population is not the same in all strata,
however, r_{3} can have smaller absolute bias than r_{2}. Moreover, both jackknife estimators may be biased in situations where the classical estimator is unbiased.

When $t_{h} \geq 1 / 2$ in each stratum h, the 1inearization variance estimator v_{1} underestimates the mean square error of the combined ratio estimator. When $t_{h} \leq 2$ in each stratum h, the balanced halfsample h^{h} viance estimator v_{2} is an overestimate.

Further results on the biases of the alternative variance estimators considered here may be obtained under some simpliying assumptions for the important case $n_{h}=2(h=1, \ldots, L)$. When the distribution of the x population and the slopes β_{h} are the same in each stratum h, both jackknife variance estimators v_{5} and v_{6} tend to underestimate $\operatorname{MSE}\left(r_{1}\right)$ for $t_{h}^{5}=t=1$ or 2 . When $t_{h}=t=0$ or 1 , the three balanced half-sample variance estimators are all overestimates.

Under the assumption that all parameters in (1.9) are the same in each stratum h (with the exception of the intercepts q), the mean square error of v_{1} was found to be less than that of the balanced half-sample variance estimator v_{2}, although the two variance estimators are of somewhat comparable stability when $<=0$ provided L is moderately large or the coefficient of variation of the x population is relatively small. (Results on the stabilities of the remaining variance estimators could not be obtained.)

In an empirical study using data from the Current Population Survey, Kish \& Frankel (1974) found that for a variety of nonlinear statistics the variance estimators based on the balanced half-sample technique were less stable than those based on the jackknife method, which in turn were less stable than the linearization variance estimator, although the differences encountered were small. Related studies by Bean (1975) and Lemeshow \& Levy (1978) have subsequently confirmed this finding in the special case of ratio estimation. On the basis of the present analysis, Kish \& Frankel's finding may be attributable to regression approximately through the origin and the small coefficients of variation ($0.076-0.19$) of the x populations involved. The models employed by Lemeshow \& Levy (1978) were in fact limited to the case of regression through the origin with the coefficients of variation of the x populations in the range 0.01 - 0.3 .

REFERENCES

Bean, J.A. (1975). Distribution and properties of variance estimators for complex multistage probability samples. Vital and Health Statistics, Series 2 , No. 65. Washington, D.C.: U.S. Government Printing Office.

Jones, H.L. (1974). Jackknife estimation of functions of stratum means. Biometrika 58, 313-21.

Kish, L. \& Franke1, M.R. (1974). Inference from complex samples (with discussion). Journal of the Royal Statistical Society B 36, 1-37.

Krewski, D. (1977). Linearization and replication methods in finite population sampling. Ph.D. thesis, Carleton University, Ottawa.

Lemeshow, S.A. ६ Levy, P.S. (1978). Estimating the variance of ratio estimates in complex sample surveys with two primary units per stratum - a comparison of balanced replication and jackknife techniques. Journal of Statistical Computation and Simulation 8 , 191-205.
McCarthy, P.J. (1966). Replication: an approach to the analysis of data from
complex surveys. Vital and Health Statistics, Series 2, No. 31. Washington, D.C.: U.S. Government Printing Office.

Rao, J.N.K. G Kuzik, R.A. (1974). Sampling errors in ratio estimation. Sankhya C 36, 43-58.

Rao, J.N.K. \& Ramachandran, V. (1974). Comparison of the separate and combined ratio estimate. Sanklya C 36, 151-6.

Rao, J.N.K. \& Webster, J.T. (1966). On two methods of bias reduction in the estimation of ratios. Biometrika 53, 571-7.

Rao, PS.R.S. (1974). Jackknifing the ratio estimator. Sankhyā C 36, 84-97.

Table 1. Coefficients D_{i} in $B\left(r_{i}\right), \quad i=1,2,3$
(original values multiplied by 1000)

L	$a=1$			$a=2$			$a=3$		
	D_{1}	D_{2}	D_{3}	D_{1}	D_{2}	D_{3}	D_{1}	D_{2}	D_{3}
2	333	-90	121	71	-6.7	32	30	-1.7	14
3	200	-13	129	45	-. 78	30	20	-. 15	13
4	143	-1.8	107	33	. 13	25	14	. 07	11
5	111	0.9	89	26	. 30	21	11	. 11	9.2
6	91	1.6	76	22	. 31	18	9.5	. 10	8.0
7	77	1.6	66	19	. 28	16	8.1	. 09	7.0
8	67	1.5	59	16	. 24	14	7.1	. 08	6.2
9	59	1.4	52	14	. 21	13	6.3	. 07	5.6
10	53	1.3	47	13	. 19	12	5.6	. 06	5.1
11	48	1.1	43	12	. 16	11	5.1	. 04	4.7
12	43	1.0	40	11	. 14	10	4.7	*	*

* Values obtained are not accurate

Table 2. Coefficients L_{i} in $\operatorname{MSE}\left(v_{i}\right), i=1,2$
(original values multiplied by 10^{6})

L	t	$a=1$		$a=2$		$a=3$	
		L_{1}	L_{2}	L_{1}	L_{2}	L_{1}	L_{2}
3	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 555714 \\ 40476 \\ 54374 \end{array}$	$\begin{aligned} & * * \\ & * * \\ & * * \end{aligned}$	$\begin{array}{r} 5438 \\ 6753 \\ 36635 \end{array}$	$\begin{aligned} & 28070 \\ & 14196 \\ & 56518 \end{aligned}$	$\begin{array}{r} 632 \\ 2643 \\ 30715 \end{array}$	$\begin{array}{r} 1437 \\ 4283 \\ 42734 \end{array}$
4	0 1 2	$\begin{aligned} & 99495 \\ & 15584 \\ & 30212 \end{aligned}$	$\begin{aligned} & * * \\ & * * \\ & * * \end{aligned}$	$\begin{array}{r} 1683 \\ 2781 \\ 18634 \end{array}$	$\begin{array}{r} 5365 \\ 5587 \\ 30142 \end{array}$	$\begin{array}{r} 220 \\ 1103 \\ 14890 \end{array}$	$\begin{array}{r} 429 \\ 1767 \\ 21350 \end{array}$
7	0 1 2	$\begin{aligned} & 7717 \\ & 2677 \\ & 8845 \end{aligned}$	$\begin{array}{r} 25421 \\ 5016 \\ 12944 \end{array}$	$\begin{array}{r} 217 \\ 508 \\ 4602 \end{array}$	$\begin{array}{r} 340 \\ 697 \\ 5814 \end{array}$	$\begin{array}{r} 32 \\ 204 \\ 3393 \end{array}$	$\begin{array}{r} 43 \\ 252 \\ 4024 \end{array}$
8	0 1 2	$\begin{aligned} & 4534 \\ & 1776 \\ & 6482 \end{aligned}$	$\begin{array}{r} 13162 \\ 3389 \\ 9883 \end{array}$	$\begin{array}{r} 137 \\ 339 \\ 3247 \end{array}$	$\begin{array}{r} 213 \\ 476 \\ 4205 \end{array}$	$\begin{array}{r} 21 \\ 136 \\ 2356 \end{array}$	$\begin{array}{r} 28 \\ 172 \\ 2846 \end{array}$
11	0 1 2	$\begin{array}{r} 1370 \\ 672 \\ 3006 \end{array}$	$\begin{array}{r} 2504 \\ 996 \\ 3939 \end{array}$	$\begin{array}{r} 47 \\ 130 \\ 1387 \end{array}$	$\begin{array}{r} 61 \\ 159 \\ 1626 \end{array}$	$\begin{array}{r} 7 \\ 52 \\ 973 \end{array}$	
12	0 1 2	$\begin{array}{r} 1001 \\ 516 \\ 2421 \end{array}$	$\begin{array}{r} 1824 \\ 787 \\ 3254 \end{array}$	$\begin{array}{r} 35 \\ 100 \\ 1094 \end{array}$	$\begin{array}{r} 46 \\ 125 \\ 1305 \end{array}$	6 40 762	*

* Values obtained are not accurate.
** Not defined for La ≤ 4.

