
CHISQUARED TESTS FOR ANALYSIS OF CATEGORICAL DATA FROM COMPLEX SURVEYS 

J.N.K. Rao and A.J. Scott* 

Carleton University and University of Auckland 

SUMMARY 

The effect of stratification and clustering 

on the asymptotic distributions of X 2 , the stand- 

goodness-of-fit chisquared statistic, and X~ , ard 
the chisquared statistic for testing independence 

in a two-way table, is investigated. It is shown 
that both X 2 and X~ are asymptotically distri- 
buted as weighted sums of independent X 2 random 

1 
variables. The weights are then related to the 

familiar design effects (deffs) used by survey 

samplers. For the special case of stratified 
simple random sampling under proportional alloca- 
tion, X 2 (or X2) is shown to provide a conserva- 

tion test withou~ any correction. A simple 
correction to X 2 , which requires only the know- 

ledge of variance estimates (or deffs) for 

individual cells in the goodness-of-fit problem, 

is proposed and empirical results on the perform- 
ance of corrected X 2 provided. Empirical work 

on X~ indicated that the distortion of nominal 
significance levels is much smaller with X 2 

2 I 
than X . 

1 . INTRODUCTION 

Methods for analysis of categorical data have 

been developed extensively under the assumption 2 

of multinomial sampling; in particular we have X 

tests for problems involving goodness-of-fit and 

tests of independence and homogeneity in two-way 
contingency tables. Recent extensions of these 
methods to multidimensional contingency tables 

using log linear models (e.g. Fienberg (1977)) 
have attracted considerable attention due to their 

close similarity to analysis of variance in pro- 

viding systematically tests of various hypotheses. 

Subject matter research workers have long 

been using these classical methods to analyze 

sample survey data, but most of the commonly used 
survey designs employ stratification or cluster 

sampling or both and hence do not satisfy the 
assumption of multinomial sampling. Operational 

and cost considerations often dictate the use of 

a complex clustered design and, therefore, it 

becomes important to assess the impact of survey 

design on the classical X 2 tests. 

in this paper we propose to investigate the 
effect of stratification and clustering on the 

asymptotic distributions of X 2 , the goodness- 
of-fit X 2 statistic, and X 2 , the X 2 statistic 

I 
for testing independence in a two-wa~ contingency 

table. In Section 2 we show that X ~ is distrib- 

uted asymptotically as a weighted sum of independ- 

ent X~. random variables, and then relate the 

weights to the familiar "design effects (deffs)" 
used by survey samplers. For the special case of 
stratified simple random sampling (srs) under 

proportional allocation, we show that X 2 

provides a conservative test without any correc- 

tion. Similar results for X~ are obtained in 
Section 4. 

Our investigation on the asymptotic distribution 

of X 2 suggests that a simple correction factor 

to X 2 , which requires only the knowledge of 

variance estimates (or deffs) for individual 

cells in the goodness-of-fit problem, might be 

satisfactory for many designs. Empirical results 
on the performance of corrected statistic ~2 

are given in Section 3. Results in Section 4, 
however, indicate that no such simple correction 

for X~ is possible. Some empirical results in 

Section ± 5 indicate that X 2 is likelv to be less 

affected by the survey des~gnT than X ~ . 

Cohen (1976), Altham (1976), and Brier (1978), 

among others have proposed simple models for 

clustering and derived appropriate X 2 tests for 

goodness-of-fit and independence in the case of 

single-stage cluster sampling (with equal cluster 

sizes) and two-stage cluster sampling (with equal 
subsample sizes). They hgve shown that a simple 

correction to X 2 (or X~) leads to asymptotic- 

ally correct test statistic, under their models. 

Extensions of these model-based results to unequal 

subsample sizes, three-stage sampling, stratified 
two-stage sampling and testing finite population 

cell proportions, along with a study on the effect 

of model deviations on the corrected X 2 of 

Altham and Brier are given in the Appendix. 

2 
2. EFFECT OF SURVEY DESIGN ON X 

2.1 X 2 Statistic 

Consider the goodness-of-fit problem with k 

cells and associated probabilities Pl'''" 'p 

(Pi > 0, 7p. = i). Let n ..... ,n~ denote t~e 
observed ce~ . ~ K 1 frequencles in a sample, s , of n 

ultimate units drawn according to a specified 
sampling design, p (s) . The conventional X 2 

statistic for testing H0 : Pi = P0i (i=l,...,k) 
is then given by 

k 
2 

X = 7 (n i nP0i )2/(np0i) . (2.1) 
1 

The statistic (2.1) is appropriate when E(n.) = 

np. which, for instance, is satisfied for ~elf- 
l 

welghting designs or under models for cluster 

sampling investigated in Section 4. For other 

cases we encounter difficulties with noncentral 

distributions, so it is natural to consider a 

more general statistic 

k 

2 P0i) 2/p 0 X = n 7 (Pi - i ' (2.2) 
1 

where ~. is an unbiased (or asymptotically 

unbiased~ estimate of p. . If n~. = n i , (2.2) 
reduces to the usual statistic (2.1~. 

2.2 Asymptotic Distribution 

We now look at the asymptotic dist{ibution of 

X 2 . To this end, we suppose that n2(p - p) 

is asymptotically (k-l)-variate normal with mean 
0 and covariance matrix V say, where 

P = (Pl ..... Pk_l ) '. If i~'p~ for any 
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! 

= (£i ..... £k-i ) can be written (at least 

asymptotically as ~ wt(s)y t , an estimator of 
tss 

the population mean for some y and weights 
wt(s) , then a suitable centraltlimit theorem for 

means ensures that n½(~ -p) is asymptotically 
normal. ~ ~ 

^ 

If a consistent estimator of V , say V , 
is available, the analysis is fairly straighT- 

forward. The natural test is based on the cor- 

responding Wald statistic 

4 = n(~ - p0 ) ,~-i(~ _ P0 ) (2.3) 

2 
which will be distributed asymptotically as Xk i 
under H0.. A good illustration of this approach 
is given in Koch et al (1975), Nathan (1975) and 
Shuster and Downing (1976). Note that X 2 can 

be expressed in the form 

X = n(~ - p0 ) (~ - p0 ) , 

where P_ = diag. (p^) - p p' is the covariance 
u ~u ~0~0 

matrix ~or multinomial sampling under H_ , so 
that X 2 is essentially a special case oOf the 

Wald statistic. The exact analogue is the mod- 

k 
2 ^ 

ified X 2 statistic n ? (~i-P0i) /Pi which 
1 

2 
is asymptotically equivalent to X under H 0 
and under local alternatives. 

Routine calculation of V is a very desir- 

able practice, but unfortunately this is still 
the exception rather than the rule. When no 
estimator V is available, practitioners very 
often use the standard X 2 statistic (2.1) or 

(2.2) even when they realize that multinomial 

assumptions are inappropriate2 The correct 
asumptotic distribution of X follows directly 

from the asymptotic normality of ~ and standard 
results on quadratic forms (Johnson and Kotz 

(1970, p. 150))• 

Theorem i. Under the hypothesis H0 : ~ = ~0 ' 
k-i 

2 2 
X = E liZ.l where Z 1 ..... Zk_ 1 are asymptot- 

1 
ically independent N(0,1) random variables and 

11 ~ 12 ~ ... ~ Ik_ 1 are the eigenvalues of 

-i D = P V . 
t0 

In general, then, X 2 is distributed 

asymptotically as a weighted sum of independent 

X~ random variables. The following results are 
immediate consequences of Theorem i. 

k-i k-i 

Corollary i. X2/11 _< E Z~i where E Z 21. = 
1 1 

n(~- p0 )' -i(~ _ ~0 ) is distributed asymptot- 

2 
ically (~) as Xk_l under H 0 . 

If the largest eigenvalue can be specified 
(or a reasonable upper bound can be set) we can 

obtain, throug~ this result, a conservative test 

by treating X~/A 1 as Xk_l . 

Corollary 2. X2/A- ~ 
2 

Xk_l for some constant A 

if and only if V = IP 0 (i.e. Var (~i) = 

IP0i(l- Poi)/n and Cov (Pi' Pj) .... IP0iP0j/n)" 

Cohen (1976), Altham (1976) and Brier (1979) 

have all proposed models with the property 

V = AP 0 or A 1 = ... = lk_ 1 = I . 

These general results can also be framed in 

more familiar sampling terms. In the case of 
k = 2 categories, D reduces to the ordinary 

, (l-p^.) ] design effect (deff) n Var (pl)/[P01 
For general k , D can be thought of as ~e 
natural multivariate extension of the design 
effect. In particular, 

11 - sup [c' v c/c'P c] 
C 

k-i k-i 

= sup [Vex ( 7. ciPi)/Vsrs( F. ciP i^ )], 
c 1 1 

where V denotes the variance under srs. 
srs 

Thus I_ represents the largest possible design 
effect itaken over all individual cell proportions 
and over all possible linear combinations of the 

cell proportions. In the same way lk_ 1 can be 

shown to be the smallest possible design effect 
taken over all possible linear combinations of the 

cell proportions. The other l.'s also represent 
1 

design effects for special linear combinations of 
the ~. 's . Thus the I. ' s may be termed 

1 1 
"generalised design effects"• 

Corollary 1 enables us to construct a con- 
servative test, if we can find an upper bound for 
the design effects of linear combinations of cell 
proportions. Corollary 2 says that to have 
2 2 X ~ IXk_l requires not only that all the 

individual cells have the same design effect I 

but that the deff for each of the covariance 
terms must also be equal to A . This 

condition is rather stringent in practice. 

2.3 Special Cases 

We now consider two special cases of the 

general result of Section 2.2. 

(i) Stratified srs (Proportional Allocation) 

Consider L strata and a stratified sample 

s = (s I ..... s L) where s h is a random sample of 

size m h drawn with replacement from stratum h . 

Let W h and Pih respectively denote the prop- 

ortion of units in stratum h and the proportion 

of units from stratum h belonging to category i. 

Then pi = h E %Pih and m h = nW h for proportional 

allocation. With this design we have 
L 

! 

v:~- z w h(~h- ~)(~h- ~) 
1 

! 

where Ph = (Plh ..... Pk-l,h ) " Therefore 

0<[c'Vc/c'Pc] = 1 - Z Wh[C' (ph-p) ]2/ (c ' ~~ < 1 
h 
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or 11 < 1 

and 

0 < X 2 < 7, Z 2 ~ 2 ¥ 
-- -- i '~k-I 

2 
Thus the ordinary X test is always conservative. 

(ii) Two Stage Sampling 

Suppose we have R primary sampling units 

(psu's) with M t secondary units in the t th 
p.s.u. (t = I,...,R; ~ML = M^) . Consider the 
following two-stage design whUch is commonly 

used: r psu's selected with probability 

proportional to size (pps) of M t with replace- 
ment and subsamples each of size m drawn srs 
with replacement independently from each selected 
psu (n = mr) . In this case E(n.) = np. 

where Pi = Pi = 7tMtPit/M 0_ and iPit i~ the 

proportion in the t th psu belonging to 

category i. We also have 

V=P + (m-l)Y~tW t(pt-p) (pt-p) '=P + (m-l)A 1 (say), 

where W t = Mt/M 0 and Pt = (Plt ..... Pk-l,t ) '" 

Let Pl >-'" ">- Qk-i denote the eigenvalues of 

p-IAI ' then Ii = l + (m-l)Pi and 

k-i 
2 2 

X = Y [i + (m-l) Qi]Z.. (2.4) 
1 l 

Also (c'A_c)/(c'Pc)~ ~ . . . . .  < 1 so that Pl < 1 
and we get 1 

k-i 2 k-i 2 2 
~. Z.l -- < [i + (m-l)Qk_l ] Y. Z.1 -- < X 
1 1 

k-I 
< [i+ (m-i)Pl ]_ k~l- 2 2 

Z. < m 7. Z. 
-- 1 -- 1 

1 1 

since p. > 0 . Thus X2/m gives a conservative 

test wha%e~er the 0. 's , but we can get a better 
1 

conservative test if a value for p. can be 
, I 

specified. We call the 0. s "generalised 
1 

measures of homogeneity" analogous to the measure 
of homogeneity based on the intraclass cor- 
relation O (Kish et al, 1976 and Kalton, 1977). 
The measure p is "portable" in the sense that 
it is relatively insensitive to cluster sizes 

unlike the deff. 

2 
3. MODIFICATION TO X 

If the I. 's were known we could get 
l 

accurate approximation for the percentage2Points 
of the true asymptotic distribution of X , 
using the methods in Solomon and Stephens (1977), 
for example. However, knowledge of the I. 's 

1 
is essentially equivalent to knowing the 
full covariance matrix V = (v0 .) and if we have 
this we can always construct ~3asymptotically 

correct Wald statistic. In practice we would 
like ~ simple approximation to the distribution 
of X that requires only very limited inform- 

ation about V . One very simple approach is 
to treat the modified statistic 

k-i 
~2 = X2/~ = Y (I./~)Z 2, 

1 1 
1 

2 
as a .Xk_l random variable, where I = 7~I./(k-l) g 

l 
2 

Obviously X 2 has the same expected value as Xk_l 
but its asymptotic variance is 

k-i 
V(X 2) = 2(k-l) + 2 7. (I. -~)2/~2 

1 
1 

larger than V(X2_I )~ = 2(k-l) unless which is all 
1.'s are equal. 
l 

The importan_t point to note about the modifi- 
cation is that I only depends on the cell 

variances v.. (or equivalently the cell design 

effects d l , l l . . . , d k  ) s i n c e  

k 
= tr(p-iv) / (k-l) = 7, vii/[Pi (k-l) ] 

1 
k 

-i 
= (k-l) ? (l-Pi)d'l " 

1 

Some knowledge about design effects for individual 

cells in a goodness-of-fit problem is often avail- 
able (Kish et al (1976) for example), whereas 
information about effects for the covariance terms 
is much less common. Note that I is not in 

general the same as ~ , the average cell design 

effect, except when Pi = i/k or d. = d (i = 
1 ..... k). 1 

Empirical Results. Table i, taken from Ewings 
(1979), shows the significance levels of the 
ordinary X 2 test and of the modified test, ~2, 

for a nominal level of 0.05 for various items 

taken from the 1971 General Household Survey 

(GHS) of the U.K. This is a stratified three- 
stage sample of approximately 13,000 households. 
Here b denotes the average cluster size and d.f. 

is an abbreviation for degrees of freedom. The 
modified test gives very good results in all cases 
of Table I. In contrast, if we naively use the 

ordinary chi-squared test without modification the 
true significance is as high as 0.41 which is 
obviously unacceptable. 

2 
Table i: Significance Levels (SL) for Ordinary X 

~2 
and Modified Test, X 

Variable d.f. b ~ Var(1.) SL(X 2) SL(X 2) 
1 

Age of Bldg 2 33.1 3.42 1.65 0.41 0.05 

Home 

(own/rent) 
3 34.4 2.54 1.82 0.37 0.06 

No. of 

bedrooms 
6 34.7 i. 29 0.20 0.15 0.06 

Bedroom 
Standard 

4 34.5 1.01 0.18 0.06 0.055 

No. of rooms 9 34.6 1.19 0.25 0.14 0.06 

No.of cars 3 34.6 1.48 0.85 0.16 0.06 

Household 

gross weekly 
income 

3 26.6 1.40 0.41 0.14 0.055 
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2 
4. EFFECT OF SURVEY DESIGN ON X I 

Consider the problem of testing for independ- 
ence in a two-way table. Suppose the k = rc 
categories are set out in a table with r rows 

and c columns. Let P~ = (PlI' PI2 ..... Prc )' 

be the vector of estimated cell proportions and 
assume as before that ~n(~ - p) is asymptotic- 

m ~ 

ally normal with mean vector and covariance 
matrix V . (Note that V will be singular here 

~ ~ 

since it is convenient to modify the definition 
of p to include all rc cells in this section.) 

Let Pr = (Pl+ ..... Pr+ )' denote the vector of 

marginal row proportions, and Pc = (P+I ..... P+c ) ' 

the vector of column proportions, with Pi+ = 
c r 
Z P and = 7. We are interested 

j=l ij P+J i=l Pij " 

in the null hypothesis of independence between 

rows and columns, i.e. 

or 

H0 : Pij = Pi+P+j (i=l ..... r; j=l ..... c) 

H 0 : P=Pr@P , 
~ ~ C  

i.e., p is the direct product of Pr and Pc " 

The usual chi-squared statistic for testing 

independence is 

A A 

r c (Pij ) 2 2 - Pi+ P+j 
XI = n y y. 

1 1 Pi+ P+j 

which, after some manipulation, can be written in 

the form 

X I = n h (p) -r ~c ~ ~ 

where h(~) denotes the (r-l) (c-l)-dimensional 
~ ~ A A A 

vector with components hij = Pij - Pi+ P+j 

and P = diag. (p) - ~ ~' ~ = ~r mr prPr where Pr 

(PI+ ..... P(r-l)+ )' with similar definition 

for P and p . 
~c ~c 

It can be shown that h.. is asymptotically 
13 

equivalent to h* = Pi lj j - Pi+P+j - Pi+P+j +Pi+P+j 

under the conditions above, so that h has the 

h*= H (~ - pr(gPc ) same asymptotic distribution as ~ 
say, where H is the (r-l)(c-l) x rc matrlx 

= S J ® 
m mr r ~c r ~ ~c 

where J~r = (I r~ _i) I0).~ and ~rl is an r × 1 

vector of ones. This means that h is asymptot- 

ically normal with mean H(p - p_ ~ pc ) and 
covariance matrix H VH'/n ~ As~~efore, if we 

have a consistent estimator, V , of V available 
a natural test for H 0 would be based~on the 

Wald statistic 

2 . = nh (p)(H . . . . .  ~ ~,) 1 h(p) 

where ~ = H(~) , which is asymptotically 

X2 m ~ ~under H 0 or on a modified version 
(r-l) (c-l) 

of the Wald statistic in which V (or H) is 
estimated assuming H 0 is true. ~ With multinomial 
sampling H V H' reduces to P ~ ~ when 

~r X 2c is equiva- = ~r ~ ~c ~so that the ordinary I 

lent to the corresponding modified Wald statistic. 

As in the case of X 2 , the true asymptotic 

distribution of X2T follows directly from stand- 
ard results on quadratic forms: 

(r-l) (c-l) 

Theorem 2 X 2 - - 7 6 Z. ~ ~ where ~ > 62 > 
" I i i 1 -- -- 

I 

"'" > ~(r-1)(c-l) are the eigenvalues of 

(p-l~r O p--l)mc (H~ V~ H')~ and ZI,Z 2 .... 'Z(r-l) (c-l) 

are asymptotically independent N(0,1) random 

variables under the null hypothesis of independence. 

The Z.'s are now linear combinations of the 
h* ' which are themselves linear combinations • . S , 

l] 
of the s 's and ~ is the deff for Z 

~ij ' i i " 
Since Z i is a particular linear combination of 

^ 's we have the P i j  ' 

11 > 61 > -- -- rc-i 

where ~_ is the largest possible deff among all 
1 

linear combinations of the cell proportions and 

is the smallest (More precisely it 
rc-i " ' 

follows from results in Anderson and Das Gupta 

(1953) that I i ~ 6 i ~ li+r+c_2.) Clearly 

X~/6 < ~ Z~ so that we can get a conservative 
1 -- 1 

test whenever we can specify 61 (or a reasonable 

upper bound for 61). 

The most important application of this result 
is to stratified srs with proportional allocation. 

Since we must have 0 < 6. < 1 for all i , 
-- 1 -- 

-- -- 1 X(r-l) (c-l) so that the ordinary 

chi-squared test is conservative, just as in the 

goodness-of-fit case. The gains from stratifica- 

tion are often rather small and the usual test 
should work very well in these cases. 

We could follow the approach of Section 2.2 
to obtain an approximate chi-squared statistic by 

dividing X~ by ~. Unfortunately this requires 
± 

information on the design effects of the h..'s 
(or h$.'s) and such information is rarely 13 

1 

available at present except in the 2 × 2 case 
(Kish and Hess (1959)). We could perhaps divide 
by I , in the hope that I is close to 6 . As 
before I can be calculated from the value of the 
design effects for the cells (i.e. from the 
diagonal elements of V) but information on 

m 

design effects for individual cells is not likely 

to be available either. (Fellegi (1978) suggests 
dividing by the averag__e cell deff d which will 

usually be close to I.) Perhaps the best that 
we can reasonably hope for in most cases is to 
have some information about design effects for the 
marginal row and column totals, (the sort of 
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information given in Kish, Groves and Krotki 

(1976), for example), and it would be desirable 

to have an approximation based on the marginal 

design effects. A simple special case where 

this is possible is when ~I = ~2 = "'" = ~rc-l= ~ 

and hence 6. = ~ for i = 1 ..... (r-l) (c-l). 
1 

All marginal design effects are also equal to 

in this case and we can find the appropriate 

multiplier from either margin. Cohen (1976), 

Altham (1976)and Brier (1979) have all proposed 

models with this property. However, the 

assumption of a common design effect throughout 

the table seems less realistic here than in the 

goodness-of-fit case, especially if the row and 

column variables are of quite different types. 

For example, average design effects for socio- 

economic classifications reported in Kish, Groves 

and Krotki (1976) range from 4 to 8 while average 

design effects for demographic variables range 

from 1.0 to 1.6. Furthermore, the limited amount 

of empirical evidence available suggests that 

will tend to be less than the average design 

effect of either margin in general (Kish and Hess 

(1959), Kish and Frankel (1974), Nathan (1975)). 

2 
5. EMPIRICAL RESULTS FOR X I 

An extensive empirical investigation based 

on the results of Section 4 has been carried out 

by Holt, Scott and Ewings (1979) using data from 

two large-scale U.K. surveys. Some results of 

that study are summarized here for illustration. 
! 

In all the e~amples the variance of the 6 i s is 

s~all and X~/~ can be regarded as a 

X(r_l) (c_l) random variable under H 0 . 

Example i. The first set of variables comes from 

the British Election Study (BES), which is a 

stratified three-stage sample, like GHS, 
(voters within wards without constituencies) of 

about 2500 British voters. The sample is 

approximately self-weighting. We are grateful 
to the SSRC Survey Archive at the University of 

Essex for making the data available. We give 

results for cross-classifications of the four 

variables set out in Table 2, along with the 

marginal design effects. Deffs are reasonably 

small for all variables in this study. 

Table 2: Description of Variables for BES 

Variable No. of Deff 
Categories 

BI: Sex 2 1.06 

B2: "Election campaign 2 1.29 

gave people facts" 

B3: "USA looks at World 3 1.32 

Politics as we do" 

B4: Social Grade 3 1.59 

B5: Length of residence 4 1.55 

In Table 3 we give values of ~ and 6 

for the cross-classifications, along with the 

value of the Wald statistic to give some feeling 

for the relative degree of dependence. 

Table 3. Deffs for Cross-classifications (BES) 

Variables r x c ~ ~ 4 

B1 x B2 2 x 2 1.14 1.02 2.39 

B1 x B3 2 x 3 1.15 1.02 18.68 

B1 x B4 2 x 3 1.30 1.12 146.75 

B1 x B5 2 x 4 1.25 1.02 2.52 

B2 x B3 2 x 3 1.13 0.97 4.94 

B2 x B4 2 x 3 1.21 0.84 2.24 

B2 x B5 2 x 4 1.26 1.00 0.58 

B3 x B4 3 x 3 1.24 1.07 19.74 

B3 x B5 3 x 4 1.19 1.03 17.89 

B4 x B5 3 x 4 1.19 0.97 20.59 

The outstanding feature of the results (and 

of all the results for other variables in the study) 

is the small value of ~ ; the ordinary chi-squared 

needs no modification in any of these examples. 

Modified statistics based on l or the average 

of the marginal deffs will be conservative in 

every case (and in every case in the larger study), 

with the one based on ~ performing slightly 

better. The unmodified chi-squared statistic, 

however, is clearly the best choice in all cases. 

Example 2. The second set of variables comes from 

the General Household Survey (GHS) of 1971. As 

can be seen from Table 4, the deffs are rather 

higher for the variables considered here. 

Table 4. Description of Variables for GHS 

Variable No. of Deff 

Categories 

GI: Rented, owned 2 

G2: Age of dwelling 2 

G3: Age of head 3 

G4: Type of Accommodation 3 

3.28 

4.28 

1.26 

2.83 

Values of ~ and ~ for the 6 cross- 

classifications are given in Table 5. 

Table 5. Deffs for Cross-classifications (GHS) 

Variables r × c l 
. . . . . . .  P 

G1 x G2 2 x 2 3.18 1.99 

G1 x G3 2 x 3 1.61 1.13 

G1 x G4 2 x 3 2.50 1.94 

G2 x G3 2 x 3 1.75 0.97 

G2 x G4 2 x 3 2.36 1.97 

G3 x G4 3 x 3 1.51 0.96 

2 

22.87 

20.17 

592.36 

156.39 

651.33 

50.83 

62 



Again ~ is always much smaller than ~ , which 
is slightly smaller in turn than the average of 
the two marginal deffs. Thus modifications based 
on ~ or the average marginal deffs will be too 
conservative for the GHS data too, although 
is too large for some of the cross-classifications 
for the unmodified chi-squared test to be satis- 
factory. 

These empirical results give extra support 
to the hypothesis that the ordinary chi-squared 
statistic for independence is very much less 
affected in a complex survey than the correspond- 
ing statistics for goodness-of-fit, although both 
these surveys are of very similar structure 
(approximately self-weighting). The results 
also indicate that modifications based on the 
average deff or the average marginal deff may 
be too severe. However, the values of ~ in the 
GHS results mean that blind application of the 
naive test still has dangers. We need models 
which explain the difference between ~ and 
and which leads to a smaller divisor than ~ . 

A simple model for two-stage sampling will be 

explored elsewhere. 
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APPENDIX 

X 2 UNDER MODELS FOR CLUSTER SAMPLING 

A.i. Two-stage Sampling (Altham' s Model) 

The population consists of R psu's with M t 
secondaries in the t th psu. A two stage sample 

s is denoted by  (s  1 . . . . .  S r  ) w h e r e  s t i s  a 
r 

subsample of size mt( ~ m t = n and m t ~ M t) and 

r is the number of sampled psu's. Let 

1 i f  ) t h  p o p u l a t i o n  e l e m e n t  o f  i t h  p s u  i s  

Zt~ i_ = in category i 

0 otherwise; l=l,...,Mt; t=l,...,R; 
i=l, ,k. 

Then 
r m r 

ni = ~ ~t ~ = ~ mti ' say. 
t=l ~=i Zt"i t=l 
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In the model approach, we regard the Ztl: 's 

as random variables with assumed distributiona~ 

properties and expectations etc. are taken with 

respect to the assumed model. Suppose (Altham, 

1976) 

E(Zt~i) = Pi and Cov(gt~ i, Zt~,j) = b..1] (A.I) 

for ~ ~ ~' . Note that these values do not 

depend on the cluster label, so we are assuming a 

form of weak exchangeability between clusters. 

This model will not be suitable if the clusters 

are obviously different (as in the case of differ- 

ent strata for example). If we also assume that 

values in different clusters are uncorrelated then 

it is straightforward to show that, conditional on 

the realized sample sizes (m I ..... mr ) ' the co- 

variance matrix of n = (n I ..... nk_l~' can be 
-% 

expressed in the form n V = n P + (7.m. ~-n)B , 

where P = diag (p) - p p' as before and B= (b..), 
~ ~ ~ ~ i] 

or as 

V = P + (m 0 - I)B , ~ (A.2) 
r .% 

where m 0 = 7 m~/n g 

1 

Notice the close similarity to the expression 

for pps sampling given in (2.4). The difference 

is that (2.4) applies only to a specific design 

but requires no assumptions about the population 

elements, while (A.2) is valid for any two-stage 

design but requires the weak exchangeability 

assumptions of the model. Of course, the choice 

of design and model are usually intimately 

related and we would normally feel more secure 

about results based on an exchangeable model if 

the sample was chosen with the self-weighting 

design of Section 2.3. 

If we make the stronger assumption of in- 

dependence between different clusters, then n 
~ 

is approximately normal for large r and, from 
k-I 

Theorem 1 X 2 , ~ 7 (i + (m0-l) pi ) Z 2. where 
1 i 

Pl ..... Pk-i are the eigenvalues of p-IB . 

Lemma. P- B is non-negative definite. 

Proof. Let B* = P- B and let Pij=E(ZtliZtl,j 

k 
Then, noting that P i = P i i + j ~ i  P i j '  we can wr i t e  

k-I k-i 
2 2 

c'B*c = 7 PikCi + 7 7. P. 0 (c.-c.) > 0 
~ ~ ~ 1 i<j 13 1 ] - -  

. 

since Pij > 0 . 

It follows from the lemma that p. < 1 for 
1 

k-i 2 
7, Z. . Hence we i=l,...,k-I so that X2/ < m0-- 1 
1 

get a conservative test if we treat X2/m0 as a 
2 random variable. 

Xk- 1 

A.2. Special Case: Constant Deffs 

In the special case when B = QP we have 

k-i 
Qi=p (i=l, .... k-l) so that X 2 ~ (l+ (m0-1) p) ~ Z 2. 

1 l 

and the asymptotic distribution of the modified 

statistic X~ = X2/(I+(m0-1) Q) is exactly X 2 
k-1 

under H O. The parameter p is like a general~zed 

measure-of homogeneity. This is an example of the 

situation in Corollary 2 of Section 2.2 and, as we 

noted there, the model is fairly restrictive since 

it implies the same deff for all individual cells 

and for all linear combinations of the cell totals. 

This model was introduced for single-stage 

sampling by Cohen (1976) for Mt=M= 2 and Altham 

(1976) for general M , and they suggest several 

ways in which it might arise naturally. 

Brier (1978) considered a model for two-stage 

sampling (for the case m =m) with multinomial 

sampling within each sampled cluster. Thus 

m = (mtl )' is multinomial with ~t ' " " " 'mt,k-I 

probabilities p = (p _ , ,p _ ) ' and the 
, ~t tl "" " t k-i 

Pt s are assumed to be sampled independently from 

Dirichlet distribution with density function 

k ~Pi -I k 

f(~t I~'~) = [F(~)/F(~pi )] ~i mti ' ~>0, mi>0, 7.p.=l. 
1 1 

The marginal distribution of m is compound 

multinomial with E(m t) = mp atd Cov (m) = 

[m(~+m)/(~+l) ]P . Using these moments, is 

readily seen that E(n) = np and 

V : [(m+~)/(l+~)]P = [i + (m-1) p]P 

where p = I/(i+~). Thus this model is an example 
of the constant deff model and ~2 = [ (l+~)/(m+V)]X 2 

~ 2 under H 0 
Xk_ 1 

We can extend these results easily to the more 

general case of unequal subsample sizes and finite 

M t , assuming srs without replacement in each 

sampled cluster. The distribution of m for 
, ~t 

given M t = (Mtk ..... Mt,k_ I) is now a (k-1)- 

dimensional hypergeometric distribution with 

density function 

k Mti M t 
f(mtlMt) = ~ ( )/(m ) 

1 mti t 
k 

, 
where M t = Mti . If we regard the M t s as 

independent random variables having compound multi- 

nomial distributions with E(M t) = M ~ and 

Cov (M t) = [Mt(M +~)/(i+~)]P , then ~he marginal 
distribution of Zm t is again compound multinomial 

with E(m ) = m p and Cov(m~) = [m (m.+~)/(l+~)]P 
~t, ~~. ~~ ~ ~ ~ 

and the m t s are independent. Weohave 

E(9) = nD as above and V = [(Tm~/n+~)/(l+~)]P = 

[i + (m^-l) Q]P where m^ = ~. mt/n and Q=I/(I+~) 
u ~ u t as before. Again we have a constant design effect 

model and the modified statistic ~2 = [ (I+~) / (m0+~) ]X 2 

~ 2 under H_ These results hold for any 
Xk-i 0" 

aeslgn for psu selection provided the m's are 

uncorrelated and the compound multinomia~ model 
is valid. 

~2 
To use the modified statistic X we need a 

value for p or alternatively for C = 

[(m +~)/(i+~)] = 1 + (m -I)Q . If the cell 

frequencies m t in eac~ cluster are observed, it 

is possible to construct estimators of C (or Q) 

which are unbiased. Since E(m t)_ = mtP ~ and 
r 

nV = Cov(n) = 7. Cov(mt) , an unbiased estimator 
1 

64 



of V is given by 

^ r [r _ r -- 2 ,] 
nV=r_ I ~  --[7.1 (mt-m) (mt-m) ' - ~'I (mt-m) P0P0 ] 

r _ r 
where m = 7~ mt/r and m = 7 mt/r. Noting that 

1 1 

vii/Pi(l-Pi) = vij/piPj = C , we can construct 

several unbiased estimators of C. Using only the 
^ 

diagonal elements of V we could use 
k 

C1 = (k-l)-i 7 vii/P0i , 
1 

k 

C2 = k-I ? vii/P0i(l-P0i ) (A.3) 
1 

or k k 
^ ^ 2 
C 3 = 7. vii/(l - 7. P0i ) 

1 1 

which are all unbiased for C under H : D_=p0 i. 
A p p r o x i m a t e l y  u n b i a s e d  e s t i m a t o r s  o f  C 0 
are valid for all ~ , are obtained from (A.3) 

if P0i is replaced by its estimator Pi = ni/n- 

The modified statistic, X 2, derived above 
does not involve the finite population sizes M 

t 
and R since we are dealing with model 
parameters p.. If our interest is in the finite 

1 
p o p u l a t i o n  p r o p o r t i o n s  P. = 7. Y. Z. x i / N  = Ni /N , 

• 1 
then zt can be shown, after some a~gebra we omit, 

that ~2 = X2/A i s  a s y m p t o t i c a l l y  Xk_l when 
B = p P , where 

r 
n n 

A=(I-~) (i + (m0-1) p)-2 -Qn 7.mt(Mt-mt )+ N(M0-m0 )Q' (A.4) 
1 

r R 
m 0= 7. m2/n as before and M 0 = 7. M2/N . In the 

1 1 

special case of m t = m, M t = M for all t , 
(A. 4) reduces to 

mr mr 
A = (i - ~)(i + (m-l) p) - ~(M-m) p. (A.5) 

If p = I/(I+~) as in Brier's model, then (A.5) 
reduces to 

r ~r m 
A = C [ ( l  - -~') + (m.{~O)R ( I  - ~ - ) ]  . 

A. 3 Distribution of ~2 Under a Deviation from 
Constant Deffs Model 

Since the assumption of constant deffs is 
rather restrictive, it is of interest to study 
the asymptotic distribution of ~2 under model 
deviations• A simple model deviation, which 
leads to nonconstant deffs, is given by the 
following "mixture" assumptions : 

L 

E(Ztli ) = ~ WhPhi = pi' Wh >0' 7.W h = 1 
h=l 

L 

Cov(Zt~i,A Zt~'A j ) = Z Whbhij = b.., ~ ~ ~' 
h= 1 z3 

(A.6) 

Bh = (bhij) = P Ph' h = 1 ..... L 

where Ph = diag (~h) - phPh and Ph (Phl ..... 

p. ~ .)'. The model (A.6) is a special case of 
K--± 

t~6 general model (A.I) of Altham. It follows that 

V = [l+(m0-1)p]P + (m0-1)(l-p)YWh(Ph- p) (ph-p)', 

so that deffs are nonconstant unless _ Ph = p~ for 
all h . 

In the special case of L = 2, we can evaluate 
the eigenvalues, I. , of p-Iv explicitly, where 

1 ~ 

-I WIW2P-I P V = [i + (m0-1)p]I + (m0-1)(l-p) (~l-P2) (pl-P2)' 

and I is the identity matrix• Since the rank of 

p-i (~i-~2) (pl-P2) , is one, k-2 of its eigenvalues 

are zero (k > 2) and the nonzero eigenvalue is 
k 

given by its trace: ~' (Pli ) 2/pi 1 - P2i . Consequently 

the eigenvalues li are given by ~2 =. " "=lk-i = 

1 + (m0-1)kQ; %1 = 1 + (m0-1) p + (m0-1) (l-Q) 6 with 

= WIW2 Y~ (Pli - P2i ) 2/pi " Since the model (A.6) 
1 

is a special case of (A.I) it follows from Section 

A.I that Ii -- < m0 or 0 _< ~ _< 1 

2 The asymptotic distributions of X2/CI and 
X /~ (= ~2) are the same under (A.6) so using 
the above ~. we have 

1 

2 b -I 2 + b 2 
~ (a + k-l) (a Xk_l XI) (A.7) 

C 1 

where a = 1 + (m0-1)p, b = (m0-1)(l-p)~. 

The coefficient of variation of the ~. 's is 
given by c = b(k-2)½/(b+(k-l)a) which telnds to 
(k-2) ½(m^-l)/(m0+k-2) as ~ ÷ 1 and p ÷ 0 . 
As p ÷ ~ or ~÷0 , (A.7) approaches X 2~_I • 
Using (A. 7) and Satterthwaite's approximat~o~ 
(or the methods of Solomon and Stephens (1977)) 
we can compute the true significance level of 

X2/C l for any desired combination (m0,P,k,~). 

A.4 Three-stage Sampling 

Suppose the population consists of R psu's, 
M t second-stage units (ssu's) in the t th psu, and 
Ktl elements in the I th ssu of the t th psu 

(7. ? = N) The sample has r psu's m 
t I Mtl " ' t 

ssu's from the t th sampled psu and ktl elements 

in the I th t th ssu of the psu (7 7~ k = n). 
t I tl 

Let k t = { ktl be the number of sampled elements 

in the t th psu. As in the case of two-stage 

sampling, we let Ztlsi = 1 if the s th element 

of the (t,l) th ssu is in category i and Ztlsi = 0 
otherwise and we assume that 

E(Ztlsi) =Pi' C°v(Ztlsi'Ztls'j)=bij (s ~ s'), 

Cov(Zt~si,Zt~,s,j) =dij (lfl ~'), 

Cov(Ztlsi, Zt,l,s, j) = 0 (t ~ t') . 

It is easily shown that the covariance matrix of 
n is given by 

nV=nP + (~. Y 2 - Y 7. ) D t ~ ktl-n)B + (Y. 2 2 
~ ~ t kt t I ktl ~ 

where B = (b0 .) and D = (d. 0). We can show that 
~ l] ~ i] 
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-~ and P -D are non-negative definite as in 

Section A.I, so that the eigenvalues, of p-iv are 

all bounded above by k 0 = ~ k~/n . Thus treating 

X2/k0 as a ~ random variablet provides a 

conservative s~ for H . In the special case 
with m = m, k . = k t~is reduces to X2/mk. 
Thus th~ tA X2 modification to that is required 
gets worse as we switch from two-stage sampling 

to three-stage sampling. 

If B = Q1 P and D = p ~ , V reduces to 

where ~C = 1 +~QI (7'27~ k2?/n~A - i) + V C P 
~ ~ t I 
P2(~t k2t/n - ~t ~ k2tl/n) ' s° we have another 

example of a model with constant design effect and 

~ 2 under H 0 . ~2 = X2/C Xk_l 

Estimators of C can be obtained from 
cluster totals in the same way as in Section A.2. 

For example, 
k 

C1 = (k-l)-i ~ ~ii/P0i 
1 

where 

r n. r _n_)2 
^ r t7 ~ _ _~l) 2 r 2 ~= (k t 
V.ll. = r-i =l(kti r - ~  P0i t 1 r ' 

with kti = ~ ktl i , is an unbiased estimator. 

A. 5 Stratified Two-stage Sampling 

We have R h psu's in stratum h with h M 
ssu's in the tth psu (h=l ..... L). A stratifie~ t 

two-stage sample consists of r h psu's and m h 
ssu's in the t th sampled psu of stratum h. Let 

Zhtli = 1 if the (h,t,1) th element is in 
category i and assume the model of Section 4.1 
holds in each stratum. Then, if n~ = (n~ .,..., ~ fl 
n. k 1 )' is the vector of category ~otals ~or 

s~ga[um h , we have E(nh) = nh Ph ' Coy (n h) = 

nhPh + nh(~-l) B h where nh = rh~ " Let 

L L 
p = Y W h Ph and p = Y Whnh/n h where W 1 ..... W L 
~ 1 ~ 1 

are the strata weights. We have E(p) = p and 
~ 

L 
Cov (~) = 7. 2 ~ = V/n ~ 1 Wh (Ph + (mh-l) Bh)/nh ~ " 

In the case of proportional allocation with 
/n = W V reduces to V = 7 W. (P~ +(nk-l)B~ ). 

' ~ n ~ ~n 

Nhte tha~ P~-~ B h is non-negative definite as 

in Section Ahl, so that V < 7. WhmhP h < m*Y.WhP h 

m*[P - 7. W h(ph-p) (ph-p)' ] < m*P , where m* = 

max (m h) . Thus the largest eigenvalue of P IV, 

11 <__ m ~ and X2/m * provides a conservative test. 

An important special case occurs when 

Bh = Q Ph" Assuming m h = m , we get 

L 
V = [I + (m-l)p][P- Z Wh(Ph- p) (ph-p)']. 

1 

For the special case L = 2 , we can obtain the 
eigenvalues explicitly. We have 

p-Iv = [i + (m-1)p][I-WiW2P-l(pl-P2) (pl-P2)']. 

Since the rank of P l(pl-P2)-~ ~ -(DI-D2)' is one, 

(k-2) of its eigenvalues roots are zero and the non- 
k 2 

zero eigenvalue is 7 (Pli - P2i ) /Pi" Hence 
1 

I. = 1 + (m-l) p, i=l ..... k-2; = [i + (m-l)p](l-6), 
I k 

) 2/p i and i =k-l, where 6 = WIW 2 X (Pli-P2 i 
1 

0 < 6 < 1 . Therefore 

2 2 
X ~ Xk-2 (1-6) 2 

1-6/(k-i + 1-6/(k-l) X1 

k 
where ~ (k-l)-i . , X 2 = ~ vii/Pi As 6 ÷ 1 /~ 

1 

approaches [ (k-l) / (k-2) ] 2 Xk_2 , (k > 2). The 

coefficient of variation of the I. 's is given 

by c = (k-2) ½6/(k-l-6) which ten~s to i/(k-2) ½ 

as 6+1 . 

If a value for p can be obtained, an 
appealing alternative test statistic is X .2 = 
X2/[l + (m-1) p] ~ 2 + (i 6*) 2 This 

Xk_ 2 - X 1 • 

provides a conservative test and should perform 
better than X2/I . 
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