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I. Introduction 

Data from sample surveys are sometimes used 
to produce estimates for geographically defined 
domains or "small areas" whose boundaries were 
not used as strata in the original sample design. 
In such cases the sample in a particular small 
area may be unrepresentative, small, or even non- 
existent. Several estimators have been suggested 
for use in these situations. In the publication 
Synthetic State Estimates of Dis abi!it~ (1968) 
the authors state that the sample size (and 
design) of the Health Interview Survey was 
inadequate to make State estimates by convention- 
al procedures and after considering several 
estimators suggest the use of a synthetic estima- 
tor. Since this publication, other estimators, 
including modifications of the synthetic esti- 
mator, have been investigated by Levy (1971), 
Royall (1978), and Gonzalez and Hoza (1978). 
Much of the research in this area has been devoted 
to evaluations of the synthetic estimator. Levy 
(1971) used mortality data to evaluate average 
relative errors of synthetic estimates for States. 
Gonzalez (1973) suggested an estimated "average 
mean square error" as a measure for evaluating 
the synthetic estimator, and used estimates of 
the number of dilapidated housing units to inves- 
tigate the bias of this estimator. Gonzalez and 
Hoza (1975) compared synthetic estimates of county 
unemployment rates from the Current Population 
Survey to 1970 Census results. Namekata, Levy 
and O'Rourke (1975) investigated synthetic State 
estimates of work loss disability in a similar 
manner. Levy and French (1977) discussed the 
properties of three small area estimators and 
compared several synthetic estimators which dif- 
fered in the ancillary information used. 

It is evident that at some point, as the 
sample size in a small area increases, a direct 
estimator becomes more desirable than a synthetic 
one. This is true whether or not the sample was 
designed to produce estimates for small areas. 
Gonzalez and Waksberg (1973) and Schaible, Brock 
and Schnack (1977a) compared errors of synthetic 
and direct estimates for Standard Metropolitan 
Statistical Areas and counties. The authors of 
both papers concluded that when small area sample 
sizes were relatively small the synthetic estima- 
tor outperformed the simple direct, whereas, when 
the sample sizes were large the direct outperform- 
ed the synthetic. These results suggest that a 
weighted sum of these two estimators would be 
better than choosing one over the other. 

Estimators that are weighted sums of two com- 
ponent estimators are not new and have been used 
to produce estimates by government agencies such 
as the Bureau of Labor Statistics, Bureau of the 
Census, and National Center for Health Statistics. 
In addition, the concept has been discussed in a 
variety of situations. A composite estimator con- 
sisting of a synthetic estimator and an adaptation 
of a regression estimator was considered by the 
National Center for Health Statistics (NCHS, 1968). 
Royall (1973) in a discussion of papers by Gonza- 
lez (1973) and Ericksen (1973), suggested that 

a choice between direct and synthetic approaches 
need not be made but that "... a combination of 
the two is better than either taken alone." Also, 
as related by Gonzalez and Hoza (1975), "In a 
seminar given at the Bureau of the Census in March 
1975, Madow suggested a combination of synthetic 
estimates and observed values for the primary 
sampling units included in the CPS." Marks (1977) 
investigated the use of a composite technique in 
the construction of the Consumer Price Index of 
the Bureau of Labor Statistics. Schaible, Brock, 
and Schnack (1977b) and Brock and Peyton (1978) 
specified a particular composite estimator and 
compared its performance with that of direct and 
synthetic component estimators. Although the 
James-Stein estimator, James and Stein (1961), and 
generalizations by Efron and Morris (1973, 1975) 
were not developed as the sum of two estimators, 
the weighting schemes given by their approach can 
generally be viewed as weighting schemes for com- 
posite estimators. Fay (1978) considered the use 
of a James-Stein estimator for the production of 
estimates of per capita income. 

In this paper the minimum mean square error 
weighting scheme and an approximation are discuss- 
ed as well as conditions under which the composite 
estimator gives large reductions in mean square 
error. In addition, the effect of errors in esti- 
mates of the minimum mean square error weight is 

investigated. 

II. Composite Estimators 

To define the composite estimator more pre- 

cisely let Y~ and Y~ be estimators for Yd' the 

population value for small area d. The general 
form of a composite estimator may then be written 

a s  

A 
-- ! 

Yd = CdYd + (I-Cd)Y~ " (i) 

The mean square error (MSE) of this estimator is 

^ 2 MSE , + (l_Cd)2 MSE Y" MSE Yd = Cd Yd 

-- 

+ 2Cd(I-Cd)E(Y~-Y d) (Y~-Yd) 

By minimizing this quantity with respect to Cd, it 

is easily shown that the minimum mean square error 

weight is 

_ 

t, MSE Yd - E(Yd-Yd) (Y"-Yd d) (2) 

MSE Y~ + MSE Y~ - 2 E ( Y " - Y d ) ( Y ' : - ~ / d ) -  = " ct Cl 

If the component estimators are independent and if 
either is unbiased with estimable variance then C~ 
can be estimated in a straightforward manner. 
However, the independence assumption may not be 
valid and an unbiased estimator may not be avail- 
able. An alternative, and perhaps less restric- 
tive, condition under which C~ becomes more 

-- ,, -- 

manageable is when E(Y~-Yd)(Yd-Yd) is small rela- 
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tive to MSE Y~. In this case C~ may be approxi- 

mated by 

1 (3) C~* = 
1 +R d 

where R d = MSE Y~/MSE Y~. The weighting scheme 

(3) can be viewed as one in which each component 

estimator is first weighted by the inverse of its 
mean square error, and then the two component 

weights normalized so that they sum to unity. 
This approximate weight can only range between 
zero and one whereas the range of the exact 
weight C~ is not restricted. A desirable feature 

of the weight C~* is that individual estimates of 

the component mean square errors are not needed 
to estimate this weight, only an estimate of 
their relative size is required. Schaible (1978) 

found that the use of the approximate weight 
rather than the exact weight produced negligible 

increases in average squared errors for 

selected models and variables. 

-- -- 
(Y" v ~/MSE Y~ is small then the If E(Y~-Yd). d--d" 

mean square error of the composite estimator can 

be written in multiples of the mean square error 

of the second component estimator as 

^ ,, 2 2C + i (4) MSE Yd/MSE Yd = (Rd+l)Cd - d " 

Figure 1. Mean Square Error of the Composite Estimator Relative to that of the Second 
Component Estimator as a Function of the Composite Weight, Cd: (MSE }ld= MSE ~d') 
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Figure 2. Mean Square Error of the Composite Estimator Relative to that of the Second 
Component Estimator as a Function of the Composite Weight, Cd: (MSE F d = 2MSE F~I') 
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Figure 3. Mean Square Error of the Composite Estimator Relative to that of the Second 
Component Estimator as a Function of the Composite Weight, Cd: (MSE ~ = 6MSE ~d') 
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Figures i, 2 and 3 illustrate this relationship 

for values of R d equal to i, 2 and 6 respectively. 

The mean square errors of the component estimators 

are indicated by horizontal lines. In practice, 
the optimum weight is not known and estimates of 
the quantity are, of course, subject to error. It 
is clear from these figures that sizable errors 
can be made in estimating the optimum weight with- 

out producing large increases in the mean square 
error of the composite estimator. This is con- 

sistent with results reported by Royall (1978) 
which show that in the case of unbiased component 
estimators the variance curve of the composite 
estimator is flat in the vicinity of the optimum 
weight. Another characteristic of composite esti- 

mators is evident from these figures. That is, if 

C d is restricted to the interval (0,i) the mean 

square error of the composite estimator is smaller 

than the larger of the two mean square errors of 

the component estimators regardless of the weight 
used. The figures also illustrate the fact that 
reduction in mean square error and the range of 
weights for which the composite estimator has 

smaller mean square error than either component 
estimator both vary with the magnitude of R d. Both 

situations are most advantageous when R d is close 
to one. 

Royall (1978) has shown that if the compo- 
nent estimators are unbiased, the composite esti- 
mator has smaller variance than either component 

estimator when 2C~ - 1 _< C d < 2C~. It should be 

noted that if the component estimators are biased 

the composite estimator has smaller mean square 

error than that of either component estimator 

under the same conditions on C d. The width of this 

interval is one. However, when C d is restricted to 

be between zero and one, the width of this inter- 
val varies with the size of the optimum weight as 

may be seen in figure 4. When the optimum weight 

is clo~e to either zero or one, there is little 
room for error in an estimate of the optimum weight 
if the composite estimator is to outperform either 

component estimator. The optimum weight will be 

close to zero or one when one of the component 
estimators has a much larger mean square error 
than the other. In this case, the estimator with 
large mean square error has little information to 
add, and it is likely that if the relative sizes 
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Figure 4. The Range of Weights (C d) for which the Composite Estimator has Smaller 
MSE than either Component Estimator 
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of the component estimator mean square errors are 
known, the estimator with small mean square error 
would be used rather than a composite estimator. 
If the mean square errors of the two component 
estimators are equal, then the optimum weight is 
one half, and as may be seen in figures 1 and 4, 
the composite will outperform either component 

estimator regardless of the weight chosen. 
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If the expected cross-product term in equa- 
tion (2) is small relative to the mean square 
error of the second component estimator then the 
percent reduction in the mean square error of the 

composite estimator as compared to the smaller of 
the mean square errors of the two component esti- 
mators is f 

l o o c ~ ,  , o<c~*_<.5 

Percent reduction 

100 (i-c~,),. 5 i c~, < i 

This relationship is illustrated in figure 5. A 

reduction of 50 percent can be expected when the 
optimum weight is one half. The percent reduc- 
tion decreases to zero when the optimum weight 
approaches zero or one. When the mean square 

error of the composite estimator is compared to 
the larger mean square error of the two component 
estimators, the percent reduction is 50 percent 
when the optimum weight is one half and approaches 
i00 percent as the optimum weight approaches zero 
or one. If the mean square error of the composite 
estimator is compared to the average of the mean 
square errors of the two component estimators then 
the percent reduction is 50 percent regardless of 
the value of the optimum weight. 
Figure 5. Percent Reduction in the Mean Square Error of the Composite Estimator as 

Compared to the Mean Square Error of the Component Estimator with Smaller 
Mean Square Error. 
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III. Empirical Results 

To further investigate the choice of weights 
for the composite estimator and to compare this 
estimator with more traditional ones, estimates 

for the 48 contiguous States and Alaska were made 
from the 1969-71 data years of the Health Inter- 
view Survey (HIS). For each of five variables 
within each State estimates were made for a range 
of weights for the two weighting schemes described 
below. Estimates were compared with corresponding 
census values and squared errors averaged over 
States were calculated. The following five vari- 
ables obtained in a similar manner in the 1970 
census and in the HIS were selected: percent of 
the population married, separated, less than one 

year of age, having completed high school, and 

having completed college. Census values were ob- 
tained from the Bureau of Census Public Use Sample 

Tapes and treated as population values (Yd). The 

sample mean or simple direct estimator (Y~) and 

the synthetic estimator (Y"~ d r were chosen as the 

two component estimators. These estimators are 
defined as follows. 

Let Yd~i denote the observation of interest 

for the ith sample unit (i=l,2,...nd~) in the ~th 

(~=I,2,...K) demographic class in the dth 

(d=l,2,...D) small area. The simple direct esti- 
mator for small area d is then 

K nd~ 

Y~ = y, Y, Yd~i/nd • 
~=i i=l 

In addition to the above notation let Nd~ repre- 

sent the number of units in the population in area 

d and class ~. The sample mean of the ~th demo- 
graphic class for the full sample is 

D nd~ 

y = y. Y, Yd~i/n .c~ .~ 
d=l i=l 

and the synthetic estimator for small area d is 
then 

K Nd~ 
Y~ = y .~ 

~=i Nd 

This estimator, with the addition of sampling 

weights and a ratio-adjustment, was used to pro- 
duce the synthetic estimates for this paper. The 
ratio-adjustment forces the weighted sum of the 
individual State synthetic estimates in a geo- 

graphic region to be consistent with the usual HIS 
probability estimate for that region. The m-cells 
were defined to be the 64 cells created by cross- 
classifying the following variables: 

i. Color: white; other 
2. Sex: male, female 

3. Age: under 17 years; 17-44 years, 

45-64 years; 65 years and over 

4. Family size: fewer than 5 members; 
5 members or more 

5. Industry of head of family: Standard 
Industrial Classifications: (i) Forestry 
and fisheries, agriculture, construction, 
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mining and manufacturing; (2) all other 

industries. 

Weighting schemes for the composite estima- 

tor were defined under two models or sets of 
assumptions about the behavior of the mean square 
errors of the component estimators. The first 
model allows the mean square errors of the two 

component estimators to vary between but not 
' = MSE Y~. Under within small areas, i.e. MSE Yd 

this model the approximate minimum mean square 
-I 

error weight is C~* = (I+R) , where R is con- 

stant for all small areas. The second model 
assumes that the mean square error of the simple 

direct estimator varies inversely with the small 
area sample size whereas that of the synthetic 
estimator remains constant, i.e. 

Yd ' = b' , MSE Y~ = b" MSE /n d _ . Under this model 

the approximate minimum mean square error weight 
-i 

is C~*_ = (l+R'/nd) where R' = b'/b". It is of 

interest to note that under this model R' is the 

small area sample size, nd, at which the mean 

square errors of the two component estimators are 

equal. 

For the variables investigated, figures 6 

through i0 show the average squared error of the 

composite estimator over the range of R and R' 
from infinity to zero. Each R and R' specifies 

a value of the approximate optimum weight which 
ranges from zero to one. The average squared 

errors of the two component estimators are indi- 
cated by horizontal lines. As expected, in no 
instance is the average squared error of the com- 
posite estimator greater than the larger average 
squared error of the two component estimators. 
In these figures the range of weights for which 
the composite estimator has smaller average 

squared error than both component estimators is 

dependent on the relative magnitude of the aver- 

age squared errors of the two component estima~ 
tors. The ranges found in these figures are con- 
sistent with the ranges of mean square error in- 
dicated in figure 4. Also, as would be expected 
from figure 5 the maximum percent reduction in 
average squared error is greatest in those vari- 

ables where the average squared errors of the 
component estimators are of a similar magnitude. 
This is the case in four of the five variables 
investigated. The exception is the variable 

"percent of the population less than one year of 
age" where the average squared error of the direct 
estimator is eight times that of the synthetic. 

The composite estimator performs well under 
-i 

both weighting schemes. However, the (l+R'/nd) 

weighting scheme seems to perform slightly better 

when all five variables are considered. The com- 

-I 
posite estimator specified by the (I+R) weight- 
ing scheme when R=I gives near minimum average 
squared errors in three of the five variables con- 

sidered and performs reasonably well for the re- 
maining two variables. This composite estimator 
is the simple average of the .component estimator~ 

In all five figures the average squared error 

curve is flat in the vicinity of the optimum 

weight. This result and the general shape of the 

curves in these figures are consistent with equa- 
tion (4). The usefulness of composite estimators 
is greatly enhanced by this general insensitivity 
to poor estimates of the optimum weight. 

Figure 6. Average Squared Errors of Two Composite Estimators, Percent of the Popu- 
lation Married, Health Interview Survey, Forty-Nine States, 1969-71 
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Figure 7. Average Squared Errors of Two Composite Estimators, Percent of the Popu 
lation Separated, Health Interview Survey, Forty-Nine States, 1969-71 
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Figure 8. Average Squared Errors of Two Composite Estimators, Percent of the Popu- 
lation Less Than One Year of Age, Health Interview Survey, Forty-Nine States, 
1969-71.  
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Figure 9. Average Squared Errors of Two Composite Estimators, Percent of the Popu- 
lation Having Completed High School, Health Interview Survey, Forty-Nine States, 
1969-71 
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Figure 10. Average Squared Errors of Two Composite Estimators, Percent of the 
Population Having Completed College, Health Interview Survey, Forty-Nine 
States, 1969-71 
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IV. Summary 

The composite estimator, a weighted sum of 
two component estimators of the same parameter, 
has a mean square error that is smaller than the 
larger of the mean square errors of the two com- 
ponent estimators. The mean square error of this 
estimator will be smaller than that of either 
component estimator when any one of Pn appropriate 
range of weights is used. When the mean square 
errors of the component estimators are equal, this 
range is from zero to one and the use of a com- 
posite estimator can achieve a reduction in mean 
square error of 50 percent. The mean square 
error curve of the composite estimator is rela- 
tively flat in the vicinity of the optimum weight 
and the composite estimator is surprisingly in- 
sensitive to poor estimates of this weight. Em- 
pirical results using average squared errors com- 
puted from the Health Interview Survey and Bureau 
of the Census data are consistent with these 
statements. 

Although composite estimators are being used 
to produce estimates, there are two areas of re- 
search which deserve additional attention. The 
first is to further investigate weighting schemes 
and the estimation of the optimum weight for the 

composite estimator. Several approaches are being 
considered and, in fact, have been used, but 
further study is needed. A second problem is to 
discover how to provide measures of error for a 
composite estimator for a given small area. This 
problem is common to all biased estimators and is, 
in general, a difficult one. One way to provide 
information on the performance of biased small 
area estimators is to estimate measures of error 
averaged over small areas. Although this informa- 
tion can be useful, it would be more desirable to 
have a measure of the estimator's performance for 
a particular small area. 
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