AN ALGORITHM FOR CALCULATING JOINT INCLUSION PROBABILITIES UNDER PPS SYSTEMATIC SAMPLING

Susan J. Pinciaro

U.S. Department of Transportation

Given the following definitions:

- $N =$ the number of units in the population
- n = the number of units in the sample
- $x_{\mathbf{k}}$ = the value of the variable x on the k^{en} unit in the population, where k refers to the position held by the unit in a given ordering of the population. The variable x is the "measure of size' variable.
- N $x = \sum_{k=1}^{k} x_k$ = the total of the x values in the population
- $X_{[0,1]} = \sum_{k} X_k$ = the total of the x values k=l through unit number Z of the population, under the given ordering

 $s = X/n = the sampling interval$

m_{ij} = the number of PPS-systematic samples of size n (out of all possible PPS - systematic samples of size n) in which units numbered i and j occur jointly.

The following algorithm finds the joint inclusion probability, ($\pi_{\texttt{i}\texttt{i}}$ = $\texttt{m}_{\texttt{i}\texttt{i}}$ +n/X) for any element 1 and j (j" $1\dots N,1\dots J)$) in the population, where i and j refer to the positions held by the specific units in a given ordering of the population. It is only necessary to find m_{ij} for all
i<i.

The algorithm:

Step 1. Determine whether i and j are too close in the ordering to appear in sample together.

If $d = \lfloor (x_{[j]} - x_{[i-1]}) - s \rfloor \leq 0$, then $m_{ij} = 0$ If $d = \left[\left(x_{\{j\}}-x_{\{i-1\}}\right)-s\right] > 0$, proceed

- Step 2. For pairs i and j with $d>0$, remove multiple of s from the "distance" between units [i-l] and [j], leaving the remainder, r
- $r = MOD \left[(x_{[i-1]}-x_{[i-1]}),s \right]$
- Step 3. Compare the relative sizes of $(r + x_i)$ and s, defining a measure called a.

If $[(r+x_j)-s] \ge 1$, then $a = (r + x_j) - s$ If $[(r+x_j)-s] < 1$, then $a=0$ $\overline{\text{step}}$ 4. It is the relative sizes of \overline{x}_i and r which determines $\texttt{m}_{\texttt{i}\texttt{j}}$. If $(x_i - r) = 0$, then $m_{i,i} = a$ If $(x_i-r) < 0$, then $m_{i,i} = min (a, x_i)$ If $(x_i-r) > 0$, calculate t = min $[(x_i-r), x_i]$ If $t = x_j$, then $m_{ij} = x_j$ If $t = x_i - r$, then $m_{i,j} = x_i - r + a$ If $x_i - r = x_j$, then $m_{ij} = x_j$

Note I. The algorithm assumes that certainty units (all units k such that x_{k} \geq s) have been removed. If such cases have not been removed, it is necessary to insert the following step before Step I.

Step O.

- if $x_i \geq s$ and $x_i \leq s$, then $m_{i,j} = x_i$ if x_i < s and $x_i \geq s$, then $m_{i,i} = x_i$ if $x_i \geq s$ and $x_i \geq s$, then $m_{i,i} = s$ if $x_i \leq s$ and $x_i \leq s$, proceed to Step I.
- Note 2. There should be no units with measure of size equal to zero in the population. If, however, the file has not been edited, and there are units with $x = 0$, then the algorithm calculates $m_{ij} = 0$ for all pairs containing such units.