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O. ABSTRACT 

Important potent ia l  tes t  s i tua t ions  ex is t  in 
which hypotheses of  equa l i t y  or strong i nequa l i t y  
are inadmissib le.  One example is the pred ic t ion  
of e lec t ion resu l ts  in a two-candidate contest .  
Both candidates cannot win. Using as an i l l u s -  
t r a t i o n  the resu l ts  of 39 Pres ident ia l  e lect ions 
with ma jo r i t i es  ranging between .652 to j us t  over 
.500, th is  a r t i c l e  describes a sequential tes t  
of weak i nequa l i t i es  (HI" P < Po vs. H 2" 

p > po ) which has a spec i f iab le  to ta l  p r o b a b i l i t y  

of e r ro r  (oF). In the i l l u s t r a t i o n  presented, 

the meaning of  th is  p r o b a b i l i t y  is as fo l lows:  
I f  the tes t  wi th equal a T had been used in a l l  

39 e lec t ions ,  p red ic t ion  would have been in e r ro r  
in approximately 39a T of  them. Monte Carlo 

t r i a l s  provided a vehic le to evaluate the tes t .  
On 1,000 of these t r i a l s  wi th a T = .I00 , the 

proport ion of erroneous pred ic t ions was .105, and 
the average sample number over a l l  39 e lec t ions 
was 2,188. 

I .  INTRODUCTION 

Do di f ferences observed in samples r e f l e c t  
t rue populat ion d i f ferences? A s t a t i s t i c a l  t es t ,  
which in the Neyman-Pearson formulat ion [3]  can 
answer th is  question e i the r  yes (with the r i sk  
of a Type I e r ror )  or no (with the r i sk  of a Type 
I I  e r r o r ) ,  can also,  in the Fisher [ I ,  Chapter 
2] formulat ion,  f a i l  to answer the question (an 
i n s i g n i f i c a n t  resu l t )  or,  answering i t ,  answer i t  
only in the a f f i rma t i ve  (a s i g n i f i c a n t  r e s u l t ) .  
Neyman [2]  reviews the controversy between these 
two opposing formulat ions.  Though the tendency 
over the years has been inc reas ing ly  to adopt the 
Neyman-Pearson formulat ion in both textbooks and 
research repor ts ,  the prac t ice  in spec i f i c  sub- 
j ec t -ma t te r  areas has not always been cons is tent .  
In psychology, fo r  example, whi le textbooks typ-  
i c a l l y  present the Neyman-Pearson fo rmula t ion ,  
research reports continue to r e f l e c t  the i n f l u -  
ence of Fisher in such statements as "The resu l t  
is s i g n i f i c a n t  (p < .05)" or "The resu l t  is not 
s i g n i f i c a n t  (p > .05) , "  where p indicates the 
p r o b a b i l i t y  that  the resu l t  (or  a more extreme 
resu l t )  is simply due to sampling e r ro r .  The 
purpose here, however, is not to evaluate e i t he r  
formulat ion,  espec ia l l y  r e l a t i v e  to the other ,  
but ra ther  to present a hybr id formulat ion app l i -  
cable p a r t i c u l a r l y  when hypotheses of equa l i t y  or 
strong inequa l i t y  are inadmissib le.  Tests so 
formulated turn out to be adaptations of the se- 
quent ia l  methods developed by Wald [4]  to the re- 
maining choice between complementary weak in -  
equa l i t i es .  

2. A HYBRID FISHER - NEYMAN-PEARSON FORMULATION 

I n a d m i s s i b i l i t y  of  hypotheses of  equa l i t y  or 
strong i nequa l i t y  is ra ther  common. Two-candi- 
date e lect ions cons t i tu te  a f a m i l i a r  example. 
Ties are inadmiss ib le :  One candidate must win, 

one must lose. The nul l  hypothesis (H O) that  the 
two candidates are equal ly  popular must thus be 
fa lse .  

I f  th is  hypothesis is fa l se ,  conversely,  then 
one candidate must be more popular than the 
other.  Dec id ingthat  one candidate is more popu- 
la r  than the other when the reverse is t rue is 
under these condi t ions an a l l - i n c l u s i v e  e r ro r  
having uncondi t iona l ,  or t o t a l ,  p r o b a b i l i t y  

a T = alP 1 + a2P 2 , (2.1) 

where a i ( i  = I ,  2) is the condi t ional  proba- 

b i l i t y  of i n c o r r e c t l y  deciding that  candidate i 
is more popular and Pi (i = I ,  2) is the 

(p r i o r )  p r o b a b i l i t y  that  candidate i is in fac t  
less popular. Fairness to both candidates re- 
quires that  a I = a 2 = a so that  

a T = a(P 1 + P2 ) • (2.2) 

I f  equal popu la r i t y  is inadmissib le,  P1 + P2 = 

1 ; there fore ,  a T = a • The to ta l  p r o b a b i l i t y  

of e r ro r  is equal to e i the r  one of the two 
(equal) condi t ional  p r o b a b i l i t i e s  of e r ro r .  

This formulat ion thus resembles Fisher 's  in 
i t s  exclusion of the accep tab i l i t y  of H 0 and 

Neyman-Pearson's in i t s  inc lus ion of the proba- 
b i l i t y  of e r ro r .  

3. SEQUENTIAL TESTING 

Appl ica t ion in the form of a s t a t i s t i c a l  
tes t  requires sequential data co l l ec t i on  un t i l  
the tes t  s t a t i s t i c  reaches a value that  favors 
one hypothesis (Candidate 1 is more popular) or 
the other (Candidate 2 is more popular) .  

As developed by Wald [ 4 ] ,  sequential tests 
t y p i c a l l y  apply to hypotheses of s t r i c t  equa l i t y -  
H l • 0 = 01 and H 2 • 0 = 02 . The basic tes t  

s t a t i s t i c  is the l i ke l i hood  ra t i o  
f2 (_~n) 

k n = f l ( ~  ) , (3.1) 

where x = {x I x 2 x } is the n-valued -n ' ' "''' n 
observation vector and f .  ( i  = l ,  2) is the 

i 

p r o b a b i l i t y  (densi ty)  of th is  vector i f  hypothe- 
sis i is t rue.  ( In th is  fo rmula t ion ,  the 
sca lar  x 's are n successive observations on a 
s ing le va r iab le . )  I f  a I is the maximal proba- 

b i l i t y  of e r ro r  in accepting hypothesis l and 
a 2 is the maximal p r o b a b i l i t y  of e r ro r  in ac- 

cepting hypothesis 2, then sampling continues 
(n increases) un t i l  L n is smal ler than 

a 2 / ( l - a  I)  or la rger  than ( l - a  2) /a  I . Accep- 

tance of hypothesis 1 occurs in the f i r s t  case, 
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of hypothesis 2 in the second. 4. THE PREDICTION OF ELECTION RESULTS 

Sampling is t y p i c a l l y  independent so that  

n 

f l(-~n) : j11- - I  f l ( x j )  (3.2) 

and 
n 

f2(-~n) : j11- - I  f 2 ( x j )  " (3.3) 

I f  the populat ion is dichotomous with H 
1 

P = Pl and H2" P = P2 ' for  example, then 

n x.  l - x .  
fi(X__n) = _I] Pi J ( l - P i )  J ( i=1,2)  (3.4) 

j - I  

where X is a 0-I b inary random var iable and 
p = E(X) . In adapting sequential tes t ing  to the 
choice between weak i nequa l i t i e s ,  we shal l  con- 
f ine ourselves to th is  case of  independent sam- 
p l ing from a dichotomous populat ion.  

The adaptation requires se t t ing  m2 = ml = m 

and determining fl(_Xn ) fo r  P < Po and f2(X__n) 

for  P > Po " I f  P l I '  PI2 . . . . .  PIN const i -  
1 

tu te a l l  the observed or known values of P < Po 

and P21' P22 . . . . .  P2N 2 cons t i tu te  a l l  the ob- 

served or known values of P > Po ' then 

IN1 n x. l - x .  
- ~ J ( l - p  ) J ( 3 . 5 )  fl(-~n ) = N1 11 Pli  l i  

i= l  j= l  

and 

N 2 n • l - x .  
XJ( l -p ) J (3.6) 

N2-11~ 1 11 P2i 2i " f2 (_~n) 
"= j= l  

These equations are, in fac t ,  raw-data forms of 
general d i s t r i b u t i o n a l  equations presented by 
Wald [4]  fo r  sequential  tests of composite hypo- 
theses. The case in which the p's cons t i tu te  
a l l  the known (as opposed to t heo re t i ca l )  values 
is essen t i a l l y  an empir ical Bayes case. This is 
the case that  we shal l  consider in our i l l u s t r a -  
t ion .  

Computational note: When the true value of 
p is near .5, some of  the products in L may 

n 
become so small as to cause a computer underflow. 
M u l t i p l i c a t i o n  of both the numerator and the 
denominator by a number greater than one w i l l  
cor rect  th is  problem wi thout  changing the value 
of  L n . Continued m u l t i p l i c a t i o n  may be neces- 

sary i f  th is  problem recurs, and, when th is  is 
the case, another problem may occur: Some of the 
products may become so large as to cause a com- 
puter overf low. Long before th is  problem occurs, 
however, the smal lest products may be set equal 
to zero wi thout  not iceably  changing the value of 
Ln . 

Voters in two-candidate e lect ions cons t i tu te  
a dichotomous populat ion.  The h i s to ry  of N 
two-candidate e lect ions fo r  a p a r t i c u l a r  o f f i c e ,  
l i ke  the United States'  Presidency, provides a 
record of complementary values of Pl i  and P2i 

such that  P2i = 1 - Pl i  ( i  = I ,  2 . . . . .  N) . 

Table 1 (Tables fo l low the References) shows 
values of P2i based on the top two candidates 

(P2i > Pli ) in 39 (N = 39) successive Presi-  

dent ia l  e lect ions beginning in 1824 (Jackson vs. 
Adams), the f i r s t  Pres ident ia l  e lec t ion  fo r  which 
there was a popular vote, and ending in 1976 
(Carter  vs. Ford), the most recent Pres ident ia l  
e lec t ion .  Monte Carlo analysis using these data 
i l l u s t r a t e s  how the tes t  j u s t  developed works. 

In th is  ana lys is ,  wi th mT= . I0 , the 39 

e lect ions had an equal p r o b a b i l i t y  ( I /39)  of 
se lec t ion on each of 1,000 t r i a l s .  Each t r i a l  
ended in the choice of one candidate or the other 
depending on the value of L at the conclusion n 
of  the tes t  on that  t r i a l :  

N n x. 1 - x. 
11 Pi J ( l  - pi ) J 

i : l  j : l  (4 I)  
Ln = N n x. l - x .  ' " 

~ 11 (I - p i  ) JPi J 
i= l  j : l  

where, with Pi = P2i ' xj  = 1 i f  the j-sampled 

voter favored Candidate 2 and x. = 0 i f  the j -  
J 

sampled voter  favored Candidate I .  Of the 1,000 
choices, 105 were in e r ro r ,  which is close to the 
nominal e r ro r  rate of I00 / I ,000 (~T = "I0) . 

The average sample number fo r  these 1,000 
t r i a l s  was 2,188. Table 2 shows the average sam- 
ple number, together wi th the number of  t r i a l s ,  
fo r  each of the 39 e lec t ions .  Since the d i s t r i -  
bution is h ighly  skewed, the median average sam- 
ple number, 239, would seem to be more represen- 
t a t i ve  than the over -a l l  average sample number. 
On approximately ha l f  of  a l l  the e lec t ions ,  the 
tes t  required sampling no more than 239 voters.  

In the case of  several e lec t ions ,  however, 
sampling many more than th is  number of voters 
tended to be necessary. In the e lec t ion  of 1880 
(Gar f ie ld  vs. Hancock), fo r  example, the average 
sample number was 18,730. This i s ,  comparative- 
l y ,  a large number, but the number required fo r  
a corresponding 90% confidence in te rva l  that  ex- 
cludes .500 is even la rger :  4,337,189. This 
number, indeed, is only s l i g h t l y  smal ler than 
ha l f  the to ta l  1880 e lec to ra te  (8,891,083)! 

Table'2 also presents the observed er ro r  rate 
fo r  each e lec t ion .  D i f f e ren t  from c lass ica l  
tests or sequential tests of po int  hypotheses, 
th is  rate varies sys temat ica l l y  around the nomin- 
al e r ro r  rate ( . I 0 ) .  The co r re la t i on  between 
major i ty  and observed e r ro r  rate i s ,  in f ac t ,  
- .71.  The e r ro r  rate has a ra ther  pronounced 
tendency to be greater  fo r  ma jo r i t i es  close to 
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.500 than fo r  major i t ies  far  from .500. Over a l l  
e lect ions,  however, the error  rate tends (as no- 
ted ea r l i e r )  to approximate i t s  nominal value. 

5. DISCUSSION 

The preceding example well i l l u s t r a t e s  the 
resul ts obtainable from a sequential weak- 
inequa l i t ies  tes t  (SWIT). I f  a SWIT were applied 
with ~T = . I0 to a l l  39 President ia l  e lect ions 

for  which there was a popular vote, then the re- 
sul ts would tend to be in er ror  on no more than 
10% of these e lect ions.  ( I f  the test  were appl i -  
ed to these elect ions with s T = .025, the re- 

sul ts would tend to be in er ror  on less than a 
single e lec t ion . )  A SWIT, l i ke  Baysian analysis,  
systemat ica l ly  takes past experience into account. 
Confidence-interval est imat ion,  by contrast ,  re- 
fers to a hypothetical future.  I f  the sampling 
procedure were to be repeated innumerable times 
to construct a 90% confidence i n te r va l ,  for  exam- 
ple, the in terva ls  constructed would contain the 
population value on approximately 90% of the re- 
pe t i t i ons .  Every time one of these in terva ls  
contained .5, no decision would be possible. A 
SWIT always resul ts  in a decision. Being sequen- 
t i a l ,  a SWIT shares advantages of other sequen- 
t i a l  tests ,  p a r t i c u l a r l y  regarding sample size. 
The average sample number of a sequential tes t  
is ,  as Wald [4]  has shown, uni formly and often 
subs tan t ia l l y  smaller than the sample size re- 
quired by a corresponding c lassical  procedure. 
Perhaps the most important advantage of a SWIT 
has to do with the p robab i l i t y  of er ror .  In a 
c lassical  tes t ,  not only does th is p robab i l i t y  
general ly have a d i f f e ren t  value fo r  each of the 
two possible decisions, but also the value fo r  
only one of these decisions is known. The prob- 
a b i l i t y  of er ror  in a SWIT, which is in fact  the 
to ta l  er ror  p robab i l i t y ,  has the same, known value 
for  each of the two possible decisions. 

The usefulness of a SWIT fo r  the predic t ion 
of e lect ion resul ts  depends, of course, on the 
resolut ion of pract ica l  sampling problems. Use- 
ful appl icat ion may require more informat ion,  
p a r t i c u l a r l y  about average sample numbers, than 
provided by the i l l u s t r a t i o n  presented here. The 
Monte Carlo analysis with s T = . I0 required 

over 295 minutes of computer time. The time re- 
quired for extending th is  analysis to smaller 
values of ~T would be p roh ib i t i ve .  This time 

depends not only on the value of mT but also on 

the d i s t r i b u t i o n  of p values. Rather than the 
ent i re  observed d i s t r i b u t i o n ,  a po l l s t e r  may 
wish to d i rec t  his inference to only a subset of 
the p va lues- - for  example, the subset corres- 
ponding to elect ions in which the current Presi- 
dent is seeking a second term. (Occurring in the 
e lect ion of 1888, the lowest p value for  th is 
subset is .504.) The time required for  a l,O00- 
t r i a l  Monte Carlo analysis may in th is case be no 
greater than 300 minutes even for  values of mT 

smaller than . I0.  I f  the times for  analysis are 
about the same, then the average sample numbers 
also ought to beabout the same. In appl icat ions 
of pa r t i cu la r  i n te res t ,  therefore,  average sample 
numbers for  SWITs in which mT = .05 or s T = 

.01 may not d i f f e r  subs tan t ia l l y  from the aver- 
age sample number obtained here for  mT= . I0 . 

The in tent ion of the i l l u s t r a t i o n  presented 
was not to provide pract ica l  informat ion,  how- 
ever, but to f a c i l i t a t e  the descr ipt ion of a SWIT 
and to indicate at least one area of potent ia l  
a p p l i c a b i l i t y .  The requirements of a SWIT in 
th is  area are, taken together,  somewhat unique: 
Independent sampling from a dichotomous popula- 
t ion with empi r ica l ly  known pr io r  p robab i l i t i es .  
SWITs applied to other areas w i l l  general ly have 
to meet d i f f e ren t  sets of requirements. 
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I .  Popular Vote for  President 

Date Winner Vote Loser Vote Major i ty 

1824 
1828 
1832 
1836 
1840 
1844 
1848 
1852 
1856 
1860 
1864 
868 
872 
876 
88O 
884 
888 
892 
896 

1900 
1904 
1908 
1912 
1916 
1920 
• I 924 
1928 
1932 
1936 
1940 
1944 
1948 
1952 
1956 
1960 
1964 
1968 
1972 
1976 

Jacks on 155,872 Adams 105,321 .597 
Jackson 647,231 Adams 509,097 .560 
Jackson 687,502 C1 ay 530,189 .565 
Van Buren 762,678 Harrison 548,007 .582 
Harrison 1,275,017 Van Buren 1,128,702 .530 
Po I k 1,337,243 Clay 1,299,068 .507 
Taylor 1,360,101 Cass 1,220,544 .527 
Pierce 1,601,474 Scott 1,386,578 .536 
Buchanan 1,927,995 Fremont 1,391,555 .581 
Lincoln 1,866,352 Douglas 1,375,157 .576 
Lincoln 2,216,067 McClellan 1,808,725 .551 
Grant 3,015,071 Seymour 2,709,61 5 .527 
Grant 3,597,070 Gree I ey 2,834,079 .559 
Hayes 4,284,757 Ti I den 4,033,950 .515 
Ga r f i  e I d 4,449,05 3 Hancock 4,442,030 .500 
Cleveland 4,911,017 Blaine 4,848,334 .503 
Harri son 5,540,050 C1 evel and 5,444,337 .504 
Cl evel and 5,554,414 Harris on 5,109,802 .517 
McKi n I ey 7,035,638 Bryan 6,467,946 .521 
McKinley 7,219,530 Bryan 6,358,071 .532 
Roosevel t 7,628,834 Parker 5,084,491 .600 
Taft 7,679,006 Bryan 6,409,106 .545 
Wi I son 6,286,21 4 Roosevelt 4,216,020 .599 
Wi I s on 9,129,606 Hughes 8,538,221 .517 
Ha rdi ng 16,152,200 Co x 9,147,353 .638 
Cool i dge 15,725, Ol 6 Davis 8,385,586 .652 
Hoover 21,392,190 Smith 15,016,443 .588 
Roosevelt 22,821,857 Hoover 15,761,841 .591 
Roosevelt 27,751,597 Landon 16,679,583 .625 
Roosevelt 27,243,466 Wi Ik ie 22,304,755 .550 
Roos evel t 25,602,505 Dewey 22,006,278 .538 
Truman 24,105,812 Dewey 21,970,065 .523 
E i sen howe r 33,936,252 S te vens on 27,314,992 .554 
Ei senhower 35,585,316 Stevenson 26,031,322 .578 
Kennedy 34,227,096 Ni xon 34,108,546 .501 
Johns on 43,126,506 Go I dwater 27,176,789 .61 3 
Ni xon 31,785,480 Humphrey 31,275,166 .504 
Ni xon 47,165,234 McGovern 28,168,110 .626 
Carter 40,825,839 Ford 39,147,770 .510 

Source" These data come from The World Almanac and Book of Facts 1978 (published in 1977 by Newspaper 
Enterprise Associat ion,  New York), p. 286. 
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2. Average Sample Number (ASN) and Error Rate in Monte Carlo Analysis 

Major i ty a ASN Frequency Error 

.500 18,730 23 .522 

.501 37,562 28 .393 
• 503 1,884 18 .556 
.504 5,759 26 .385 
.504 8,565 24 .292 
.507 1,070 20 .550 
.510 2,353 18 .333 
.515 1,457 24 .040 
.517 751 30 .I00 
.517 565 24 .167 
.521 797 34 .088 
.523 791 37 .162 
.527 464 20 .I00 
.527 386 26 .154 
.530 447 23 .087 
.532 317 25 .080 
• 536 483 30 .1 O0 
• 5 38 184 30 .067 
.545 281 38 .026 
• 550 258 22 .000 
.551 179 18 . I I I  
.554 193 26 .038 
.559 239 25 .000 
.560 142 31 .000 
• 565 1 34 21 .048 
.576 106 26 .000 
• 578 115 20 .000 
.581 120 28 .000 
.582 I I I  26 .038 
.588 70 20 .000 
.591 I00 23 .000 
.597 81 26 .000 
.599 82 27 .000 
.600 75 33 .000 
• 61 3 60 24 .000 
.625 54 20 .000 
.626 47 33 .000 
• 6 38 41 33 .000 
.652 47 19 .000 

aAs in Table I ,  the major i t ies  indicated here are only 3-place approximations; for  example, .500 is 
an approximation of the actual ma jor i ty ,  4,449,053/(4,449,053 + 4,442,030). 
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