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0. ABSTRACT

Important potential test situations exist in
which hypotheses of equality or strong inequality
are inadmissible. One example is the prediction
of election results in a two-candidate contest.
Both candidates cannot win. Using as an illus-
tration the results of 39 Presidential elections
with majorities ranging between .652 to just over
.500, this article describes a sequential test
of weak inequalities (HT: P <P, Vvs. Hy

p > po) which has a specifiable total probability

of error (aT). In the illustration presented,

the meaning of this probability is as follows:
If the test with equal or had been used in all

39 elections, prediction would have been in error
in approximately 390cT of them. Monte Carlo

trials provided a vehicle to evaluate the test.

On 1,000 of these trials with ap = .100 , the

proportion of erroneous predictions was .105, and
the average sample number over all 39 elections
was 2,188.

1. INTRODUCTION

Do differences observed in samples reflect
true population differences? A statistical test,
which in the Neyman-Pearson formulation [3] can
answer this question either yes (with the risk
of a Type I error) or no (with the risk of a Type
II error), can also, in the Fisher [1, Chapter
21 formulation, fail to answer the question (an
insignificant result) or, answering it, answer it
only in the affirmative (a significant result).
Neyman [2] reviews the controversy between these
two opposing formulations. Though the tendency
over the years has been increasingly to adopt the
Neyman-Pearson formulation in both textbooks and
research veports, the practice in specific sub-
ject-matter areas has not always been consistent.
In psychology, for example, while textbooks typ-
ically present the Neyman-Pearson formulation,
research reports continue to refiect the influ-
ence of Fisher in such statements as "The result
is significant (p < .05)" or "The result is not
significant (p > .05)," where p indicates the
probability that the result (or a more extreme
result) is simply due to sampling error. The
purpose here, however, is not to evaluate either
formulation, especially relative to the other,
but rather to present a hybrid formulation appli-
cable particularly when hypotheses of equality or
strong inequality are inadmissible. Tests so
formulated turn out to be adaptations of the se-
quential methods developed by Wald [4] to the re-
maining choice between complementary weak in-
equalities.

2. A HYBRID FISHER - NEYMAN-PEARSON FORMULATION

Inadmissibility of hypotheses of equality or
strong inequality is rather common. Two-candi-
date elections constitute a familiar example.
Ties are inadmissible: One candidate must win,
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one must lose. The null hypothesis (Hg) that the
two candidates are equally popular must thus be
false.

If this hypothesis is false, conversely, then
one candidate must be more popular than the
other. Decidingthat one candidate is more popu-
lar than the other when the reverse is true is
under these conditions an all-inclusive error
having unconditional, or total, probability

= oq.Py + 0P, (2.1)
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where o (i =1, 2) 1is the conditional proba-

bility of incorrectly deciding that candidate i
is more popular and P, (i =1, 2) 1is the

(prior) probability that candidate 1 s in fact
less popular. Fairness to both candidates re-
quires that 0p =a, =a so that

= OL(P1 + P (2.2)

O 2) -

Pl P, =

The total probability

of error is equal to either one of the two
(equal) conditional probabilities of error.

If equal popularity is inadmissible,

1 ; therefore, ar =0

This formulation thus resembles Fisher's in
its exclusion of the acceptability of H0 and

Neyman-Pearson's in its inclusion of the proba-
bility of error.

3. SEQUENTIAL TESTING

Application in the form of a statistical
test requires sequential data collection until
the test statistic reaches a value that favors
one hypothesis (Candidate 1 is more popular) or
the other (Candidate 2 is more popular).

As developed by Wald [4], sequential tests
typically apply to hypotheses of strict equality:

H1 10 = 91 and H2 : 0 = 62 . The basic test

statistic is the likelihood ratio
L
n 1'=n

where X, = {x1, Xos +ees xn} is the n-valued

observation vector and fi (i =1, 2) 1is the

probability (density) of this vector if hypothe-
sis i is true. (In this formulation, the

scalar x's are n successive observations on a
single variable.) If o is the maximal proba-

bility of error in accepting hypothesis 1 and
o, is the maximal probabitity of error in ac-

cepting hypothesis 2, then sampling continues

(n increases) until Ln is smaller than
az/(1—u]) or Targer than (1—@2)/a] Accep-

tance of hypothesis 1 occurs in the first case,



of hypothesis 2 in the second.

Sampling is typically independent so that

n
filx) = T f1(xj) (3.2)
j=1
and
n
fz(én) = '§ fz(xj) (3.3)
j=1
If the population is dichotomous with H1 :
P =Py and H2 PP =P, for example, then
n Xj 1—xj ]
fi(x,) = Rad (1-p,) (i=1,2) (3.4)
where X 1is a 0-1 binary random variable and
p = E(X) . In adapting sequential testing to the

choice between weak inequalities, we shall con-
fine ourselves to this case of independent sam-
pling from a dichotomous population.

The adaptation requires setting 4y = 0q = a
and determining f1(§ﬂ) for p < Py and fz(gn)
If p1], Pips «--

for p > Py - consti-

5 p1N]
tute all the observed or known values of p < Po

and Psqs Pogs -o-s P constitute all the ob-
21° "2 2N2
served or known values of p > Py > then
1 Mg X 1—xj
f](ﬁﬂ) = N] 1§1 jg1p]i (1'P11) (3.5)
and
-1 N2 n X3 1—xj
folx) = Ny" 0 T Topys 9(1-p,.) . (3.6)

i=1 j=1

These equations are, in fact, raw-data forms of
general distributional equations presented by
Wald [4] for sequential tests of composite hypo-
theses. The case in which the p's constitute
all the known (as opposed to theoretical) values
is essentially an empirical Bayes case. This is
the case that we shall consider in our illustra-
tion.

Computational note: When the true value of
p is near .5, some of the products in Ln may

become so small as to cause a computer underflow.
Multiplication of both the numerator and the
denominator by a number greater than one will
correct this problem without changing the value
of Ln . Continued multiptlication may be neces-

sary if-this problem recurs, and, when this is
the case, another problem may occur: Some of the
products may become so large as to cause a com-
puter overflow. Long before this problem occurs,
however, the smallest products may be set equal
to zero without noticeably changing the value of
n .
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4. THE PREDICTION OF ELECTION RESULTS

Voters in two-candidate elections constitute
a dichotomous population. The history of N
two-candidate elections for a particular office,
Tike the United States' Presidency, provides a
record of complementary values of P14 and Pos

- Py (i=1,2, ..., N) .

Table 1 (Tables follow the References) shows
values of Poj based on the top two candidates

such that Ppi = 1

(p21 > p]i) in 39 (N = 39) successive Presi-

dential elections beginning in 1824 (Jackson vs.
Adams), the first Presidential election for which
there was a popular vote, and ending in 1976
(Carter vs. Ford), the most recent Presidential
election. Monte Carlo analysis using these data
illustrates how the test just developed works.

the 39

elections had an equal probability (1/39) of
selection on each of 1,000 trials. Each trial
ended in the choice of one candidate or the other
depending on the value of Ln at the conclusion

of the test on that trial:

In this analysis, with op = .10,

N n X . 1 - X,
.21 ~H1pi 3(1 = pi) J
_ ‘[: J:
Ln ~ N n X; T - X; > (4.7)
Z I (‘I - Pi) pi
i=1 j=1

where, with Py = Poy » xj =1
voter favored Candidate 2 and xj =0

if the j-sampled
if the j-

sampled voter favored Candidate 1. Of the 1,000
choices, 105 were in error, which is close to the
nominal error rate of 100/1,000 (uT = .10) .

The average sample number for these 1,000
trials was 2,188. Table 2 shows the average sam-
ple number, together with the number of trials,
for each of the 39 elections. Since the distri-
bution is highly skewed, the median average sam-
ple number, 239, would seem to be more represen-
tative than the over-all average sample number.
On approximately half of all the elections, the
test required sampling no more than 239 voters.

In the case of several elections, however,
sampTing many more than this number of voters
tended to be necessary. In the election of 1880
(Garfield vs. Hancock), for example, the average
sample number was 18,730. This is, comparative-
ly, a large number, but the number required for
a corresponding 90% confidence interval that ex-
cludes .500 is even larger: 4,337,189. This
number, indeed, is only slightly smaller than
half the total 1880 electorate (8,891,083)!

Table'2 also presents the observed error rate
for each election. Different from classical
tests or sequential tests of point hypotheses,
this rate varjes systematically around the nomin-
al error rate (.10). The correlation between
majority and observed error rate is, in fact,
-.7T. The error rate has a rather pronounced
tendency to be greater for majorities close to



.500 than for majorities far from .500. OQOver all
elections, however, the error rate tends (as no-
ted earlier) to approximate its nominal value.

5. DISCUSSION

The preceding example well illustrates the
results obtainable from a sequential weak-
inequalities test (SWIT). If a SWIT were applied
with ap = .10 to all 39 Presidential elections

for which there was a popular vote, then the re-
sults would tend to be in error on no more than
10% of these elections. (If the test were appli-
ed to these elections with Op = .025, the re-

sults would tend to be in error on less than a
single election.) A SWIT, 1ike Baysian analysis,

systematically takes past experience into account.

Confidence-interval estimation, by contrast, re-
fers to a hypothetical future. If the sampling
procedure were to be repeated innumerable times
to construct a 90% confidence interval, for exam-
ple, the intervals constructed would contain the
population value on approximately 90% of the re-
petitions. Every time one of these intervals
contained .5, no decision would be possible. A
SWIT always results in a decision. Being sequen-
tial, a SWIT shares advantages of other sequen-
tial tests, particularly regarding sample size.
The average sample number of a sequential test
is, as Wald [4] has shown, uniformly and often
substantially smaller than the sample size re-
quired by a corresponding classical procedure.
Perhaps the most important advantage of a SWIT
has to do with the probability of error. In a
classical test, not only does this probability
generally have a different value for each of the
two possible decisions, but also the value for
only one of these decisions is known. The prob-
ability of error in a SWIT, which is in fact the
total error probability, has the same, known value
for each of the two possible decisions.

The usefulness of a SWIT for the prediction
of election results depends, of course, on the
resolution of practical sampling problems. Use-
ful application may require more information,
particularly about average sample numbers, than
provided by the illustration presented here. The
Monte Carlo analysis with or = .10 required

over 295 minutes of computer time. The time re-
quired for extending this analysis to smaller
values of op would be prohibitive. This time

depends not only on the value of or but also on

the distribution of p values. Rather than the
entire observed distribution, a pollster may
wish to direct his inference to only a subset of
the p values--for example, the subset corres-
ponding to elections in which the current Presi-
dent is seeking a second term. {Occurring in the
election of 1888, the lowest p value for this
subset is .504.) The time required for a 1,000-
trial Monte Carlo analysis may in this case be no
greater than 300 minutes even for values of o

smaller than .10. If the times for analysis are
about the same, then the average sample numbers
also ought to be about the same. In applications
of particular interest, therefore, average sample
numbers for SWITs in which ap = .05 or ap =

.01 may not differ substantially from the aver-
age sample number obtained here for or = .10 .

The intention of the illustration presented
was not to provide practical information, how-
ever, but to facilitate the description of a SWIT
and to indicate at least one area of potential
applicability. The requirements of a SWIT in
this area are, taken together, somewhat unique:
Independent sampling from a dichotomous popula-
tion with empirically known prior probabilities.
SWITs applied to other areas will generally have
to meet different sets of requirements.
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1.

Popular Vote for President

Enterprise Association, New York), p. 286.
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Date Winner Vote Loser Vote Majority
1824 Jackson 155,872 Adams 105,321 .597
1828 Jackson 647,231 Adams 509,097 .560
1832 Jackson 687,502 Clay 530,189 .565
1836 Van Buren 762,678 Harrison 548,007 .582
1840 Harrison 1,275,017 Van Buren 1,128,702 .530
1844 Potk 1,337,243 Clay 1,299,068 .507
1848 Taylor 1,360,101 Cass 1,220,544 .527
1852 Pierce 1,601,474 Scott 1,386,578 .536
1856 Buchanan 1,927,995 Fremont 1,391,555 .581
1860 Lincoln 1,866,352 Douglas 1,375,157 .576
1864 Lincoln 2,216,067 McClellan 1,808,725 .551
1868 Grant 3,015,071 Seymour 2,709,615 .527
1872 Grant 3,597,070 Greeley 2,834,079 .559
1876 Hayes 4,284,757 Tilden 4,033,950 .515
1880 Garfield 4,449,053 Hancock 4,442,030 .500
1884 Cleveland 4,911,017 Blaine 4,848,334 .503
1888 Harrison 5,540,050 Cleveland 5,444,337 .504
1892 Cleveland 5,554,414 Harrison 5,109,802 517
1896 McKinley 7,035,638 Bryan 6,467,946 .521
1900 McKinley 7,219,530 Bryan 6,358,071 .532
1904 Roosevelt 7,628,834 Parker 5,084,491 .600
1908 Taft 7,679,006 Bryan 6,409,106 .545
1912 MWilson 6,286,214 Roosevelt 4,216,020 .599
1916 Wilson 9,129,606 Hughes 8,538,221 .517
1920 Harding 16,152,200 Cox 9,147,353 .638
1924 Coolidge 15,725,016 Davis 8,385,586 .652
1928 Hoover 21,392,190 Smith 15,016,443 .588
1932 Roosevelt 22,821,857 Hoover 15,761,841 .591
1936 Roosevelt 27,751,597 Landon 16,679,583 .625
1940 Roosevelt 27,243,466 Wilkie 22,304,755 .550
1944 Roosevelt 25,602,505 Dewey 22,006,278 .5b38
1948  Truman 24,105,812 Dewey 21,970,065 .523
1952 Eisenhower 33,936,252 Stevenson 27,314,992 .554
1956 Eisenhower 35,585,316 Stevenson 26,031,322 .578
1960 Kennedy 34,227,096 Nixon 34,108,546 .501
1964 Johnson 43,126,506 Goldwater 27,176,789 .613
1968 Nixon 31,785,480 Humphrey 31,275,166 .504
1972 Nixon 47,165,234 McGovern 28,168,110 .626
1976 Carter 40,825,839 Ford 39,147,770 .510
Source: These data come from The World Almanac and Book of Facts 1978 (published in 1977 by Newspaper



2. Average Sample Number (ASN) and Error Rate in Monte Carlo Analysis

Majoritya ASN Frequency Error
.500 18,730 23 .522
.501 37,562 28 .393
.503 1,884 18 .556
.504 5,759 26 .385
.504 8,565 24 .292
.507 1,070 20 .550
.510 2,353 18 .333
.515 1,457 24 .040
.517 751 30 .100
.517 565 24 .167
.521 797 34 .088
.523 791 37 .162
.527 464 20 .100
.527 386 26 .154
.530 447 23 .087
.532 317 25 .080
.536 483 30 .100
.538 184 30 .067
.545 281 38 .026
.550 258 22 .000
.551 179 18 A1
.554 193 26 .038
.559 239 25 .000
.560 142 31 .000
.565 134 21 .048
.576 106 26 .000
.578 115 20 .000
.581 120 28 .000
.582 m 26 .038
.588 70 20 .000
.591 100 23 .000
.597 81 26 .000
.599 82 27 .000
.600 75 33 .000
.613 60 24 .000
.625 54 20 .000
.626 47 33 .000
.638 41 33 .000
.652 47 19 .000

8s in Table 1, the majorities indicated here are only 3-place approximations; for example, .500 is
an approximation of the actual majority, 4,449,053/(4,449,053 + 4,442,030).
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