F. Lock Oh and Fritz Scheuren, Social Security Administration

This paper provides a few initial results from a simulation study of raking ratio estimators. The particular aspects of raking examined here were in part suggested by our various "real life" experiences with raking, some of which are described in the previous paper [31].

1. SOME UNRESOLVED ISSUES

Despite the extensive literature on raking (see references in [31]), there remain a number of major unresolved issues. With one slight exception [35], for example, there has been no considexation of what happens to raking ratio estimators when the outside (or external) marginal totals are themselves subject to error. There also seems to have been virtually no study made of the properties of raking estimators when the sample (or interior) marginal totals are subject to misclassification or other response problems.

Perhaps the issue of most concern to us has been the performance of raking ratio estimators when used, as is commonly the case, in surveys (like the Current Population Survey [49]) which suffer from coverage errors. In particular, what kind of bias-variance tradeoffs can be expected (especially in small samples)?

The use of raking to make coverage adjustments is the focus of the simulation results provided here. Our attention will be confined to an examination of raking's impact on the mean square error when adjusting for coverage errors in samples of small to moderate size. We will assume basically that the coverage errors encountered are such that every class of individuals in the population is represented in the sample, but not necessarily in its proper proportion.

2. INITIAL STMULATIONS

The simulation experiments we have conducted so far systematically vary six different factors. These factors, and how each was treated, are discussed briefly below, along with some of the hypotheses we wished to test.

Sample size.--Four different sample sizes were examined: $\mathrm{n}=50 ; \mathrm{n}=100$; $\mathrm{n}=400$; and $\mathrm{n}=800$. One of the hypotheses of interest here was that for the smaller samples (e.g., $n=50$ or $n=100$) there would actually be a marked deterioration in variance performance over the unraked estimator. (This turns out to be the case in at least some circumstances as we will see below.)

Number of levels of each marginal raked.--Attention was confined in the simulation to only the simplest form of univariate raking, i.e., the case where we successively rake a sample to known outside row and column totals. In the computations done for these Proceedings, we have looked at just 4×4 and 7×7 tables. 1/

We hypothesized that the variance performance of the 7×7 raked data would be inferior to that for the 4×4 case in small samples. We surmised, too, that it would become superior only in moderate to large samples where there was a very strong dependence between the raked and unraked information.

Whether the expected sample totals and outside marginal totals were equal. --Two alternatives were considered in the simulation (see figure 1):
(a) Unbiased.--The row and column outside marginal totals, or "controls," were equal. to their corresponding expected sample counts.
(b) Biased.--The controls were taken to be different from the sample expected values.

The questions of obvious interest here are to what extent did the bias "correction" adversely affect variances, and at what point did it begin to reduce the mean square error?

Figure 1.--Expected Sample Marginals and Outside Controls for Sample Size $n=50$

Row or Column Class	Unbiased		Biased	
	7×7	4×4	7×7	4×4
First..	10.0 10.0	20.0	5.0 5.0	10.0
Third..	7.5 7.5	15.0	5.0 7.5	12.5
Fifth..	5.0 5.0	10.0	$\begin{array}{r} 7.5 \\ 10.0 \end{array}$	17.5
Seventh.....	5.0	5.0	10.0	10.0

Note: For the larger sample sizes considered in the simulations the
"controls" used were multiples (2,8 and 16) of those shown above
(for $\mathrm{n}=100,400$ and 800 respectively).

Extent of relationships within variables being raked. 2/--Three alternatives were considered (see figure 2):
(a) Totally unrelated. -- The row and column variables were statistically independent.
(b) Totally related. --The row and column variables were the same (i.e., we set the column variable equal to that for the row). This is equivalent to employing a simple ratio estimator based on the rows.
(c) Partially related.--At random, one-fourth of the time, we made the column variable equal to that for the row.

We hypothesized that when the raked variables were totally unrelated, the adjustment would have a greater impact on the variance than for the partially or totally related settings.

Figure 2 - Alternative relationships between row and column variables used in the raking

Extent of Relationship	$\stackrel{\text { Row }}{\text { Variable }} \tilde{\mathrm{x}}_{1}$	$\underset{\text { Variable } \tilde{\mathrm{X}}_{2}}{\text { Column }}$
Totally Unrelated	$\widetilde{\mathrm{x}}_{1}=\mathrm{X}_{1}$	$\widetilde{x}_{2}=x_{2}$
Totally Related	$\tilde{\mathrm{x}}_{1}=\mathrm{X}_{1}$	$\mathrm{x}_{2}=\mathrm{x}_{1}$
Partially Related	$\tilde{\mathrm{x}}_{1}=\mathrm{x}_{1}$	$\tilde{x}_{2}= \begin{cases}x_{1} & x_{4}<.25 \\ x_{2} & x_{2} \geq .25\end{cases}$

Nature of variables whose mean square error we wish to reduce. --The basic structure of the experiment was to draw samples of vectors,

$$
\underline{x}^{\prime}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right),
$$

each component of which was an independent uniform random number on (0,1). Two basic functions,

$$
Y_{h}=g_{h}(\underline{X}) \quad h=1,2,
$$

were examined in the simulations. These were:
(a) bounded "uniform type" random variables $\left\{g_{1}(\underline{X})\right\}$ constructed essentially as linear combinations of some of the components of \underline{X}; and
(b) unbounded "exponential type" random variables $\left\{g_{2}(X)\right\}$ obtained as linear combinations of some of the components of \underline{Z} where \underline{Z} and \underline{X} are related component for component by the (probability integral) transformation

$$
x=1-\exp \{-(0.1) \text { times } z\} .
$$

Naturally, greater variance effects, both increases and decreases, were anticipated for the unbounded "exponential type" variables rather than for the bounded "uniform" ones.

Degree of dependence between raked and unraked variables.--There were three types of dependence considered between the raked row and column variables and the "unraked" $\left\{\mathrm{Y}_{\mathrm{h}}\right\}$ variables. We have characterized these as "Complete Independence," "Complete Dependence," and "Partial Dependence." There are two versions of each form of dependence subject to whether a "uniform" or "exponential" type variable is being looked at. (See figure 3.)

Replication of experimental conditions.--The results to be discussed in the next section were based on 200 replications for the $n=50$ case and 100 replications for sample sizes $n=100, n=400$
and $n=800$. In every instance the raking was carried out until for all levels of the row and column marginal either

$$
\left|\ln \frac{\text { outside total }}{\text { adjusted sample total }}\right|<.00001
$$

or the process had proceeded for 100 cycles.
Generally, except for samples of size $n=50$, convergence occurred quickly even when the expected sample marginals differed from the outside totals being introduced. For the n=50 samples, two difficulties arose. First, in five or six cases, one (or more) row or column classes of the data were zero and, hence, raking could not be carried out unless some collapsing was done. (We discarded these samples before raking and they were not used in any of the comparisons.) Second, again because $\mathrm{n}=50$ is so small, for the biased 7 x 7 case a substantial portion of the replications were ones where we proceeded the full 100 cycles, i.e., convergence did not occur. (These latter samples were, however, still used in the comparisons, and undoubtedly contributed to the poor variance performance of the raking estimator for $n=50$.)

Figure 3.--Alternative relationships between the raked and unraked variables

Form of Dependence	$\begin{aligned} & \text { Uniform-type } \\ & \text { variables } \end{aligned}$	Exponential-type variables
Complete Independence	$Y=X_{3}$	$\mathrm{Y}=\mathrm{Z}_{3}$
Complete Dependence	$\begin{aligned} Y= & 0.5+\sqrt{9 / 5}\left\{1 / 3\left(X_{1}-.5\right)\right. \\ & \left.+2 / 3\left(X_{2}-.5\right)\right\} \end{aligned}$	$\begin{aligned} Y= & 10+\sqrt{9 / 5}\left\{1 / 3\left(z_{1}-10\right)\right. \\ & \left.+2 / 3\left(z_{2}-10\right)\right\} \end{aligned}$
Partial Dependence	$\begin{aligned} Y= & 0.5+\sqrt{36 / 14}\left\{1 / 3\left(X_{1}-.5\right)\right. \\ & \left.+1 / 6\left(X_{2}-.5\right)+1 / 2\left(X_{3}-.5\right)\right\} \end{aligned}$	$\begin{aligned} Y= & 10+\sqrt{36 / 14}\left\{1 / 3\left(z_{1}-10\right)\right. \\ & \left.+1 / 6\left(z_{2}-10\right)+1 / 2\left(z_{3}-10\right)\right\} \end{aligned}$

3. RESULTS OF INITIAL SIMULATIONS

In this section we will attempt to highlight, factor by factor, the simulation results obtained. We will focus our remarks (see tables 1 to 3) solely on the performance characteristics of the means of the unconstrained variables $\left\{Y_{h}\right\}$.
Sample size.--For the $n=50$ case, as expected, there was an increase in the variance caused by the raking. This was especially marked if an adjustment for coverage errors was being made. It is also interesting to note that the increase occurred quite generally, even sometimes when the raked and unraked variables were completely dependent.

For the larger sample sizes, some variance "price" continued to be paid when raking if the unconstrained mean was independent of the raked
variables. When it was not independent, substantial benefits in reduced variance were achievable.

Number of marginal totals.--As hypothesized, for $\mathrm{n}=50$ the variance performance of the 7×7 raked estimator was inferior to the 4×4 one. If the raked and unraked variables were independent, the 7×7 raked estimator continued to be inferior for larger samples. The difference decreased as " n " grew larger but did not disappear even for $\mathrm{n}=800$. If the raked and unraked variables were dependent, then the performance of the 7×7 and 4×4 estimators followed no consistent pattern.

To compensate for the variance increase that sometimes accompanied the use of more controls, there was an accompanyirg increase in the 7×7 estimator's ability to reduce the coverage bias. Except for $n=50$, in fact, when adjusting for coverage errors, the root mean square error of the 7 x 7 estimator was smaller than the corresponding 4×4 estimator. This was true even though the classifiers used were such that the ratios of outside control to expected sample total were the same before and after collapsing from seven classes to four (see figure 1).

Whether expected sample totals and outside "controls" were equal. - The variance impact of using raking as a coverage adjustment procedure can be clearly seen when we contrast its behavior to a raking estimator for which the outside totals and expected sample marginals were equal. Our simulation results show, for instance, that there was virtually always some increase in the variance when the controls differed from the expected sample size. This increase tended to be quite large when the unconstrained mean was independent of the raked variables. It diminished in importance in the partial dependence case and all but disappeared (for $n>50$) when there was complete dependence of the unconstrained mean on the raked variables.

Extent of relationship within variables being raked.--By and large, if the raked variables were not related to each other, then the raking had a greater impact on the variance. This impact could be either beneficial or adverse. If the unconstrained mean was independent of the raked variables, then the impact was adverse. On the other hand, if the unconstrained mean depended completely on the raked variables, then the greatest variance reductions were achieved.

Nature of variables being studied.--The same overall patterns we have been describing occurred for both the "uniform" and "exponential" type unconstrained means. There was some difference in the behavior of these two types of variables but it was a question of degree only. Substantially larger changes occurred in the "exponential" means than in the "uniform" ones when adjusting for bias. Conversely (contrary to our expectations), the variance impact of the raking tended to be smaller for "exponential" vartables than for "uniform" ones (i.e.,
smaller relative increases or decreases occurred for the "exponential" cases, all other things being equal).

Degree of dependence between raked and unraked variables.--Perhaps the most important factor in deciding whether to use a raking ratio estimator is the degree of dependence anticipated between the raked and unraked variables. If there is little or no dependence, then raking just tends to increase the variance, especially in a very small samples or when attempting to correct for coverage errors. If there is a moderate amount of dependence, then raking can be quite beneficial. In fact, it can simultaneously reduce both the coverage bias and the sampling variance.

4. CONCLUSIONS AND AREAS FOR FUTURE STUDY

In a multi-purpose survey with many, many variables, we typically would have a situation in which a raking coverage adjustment materially reduced the mean square error of some variables. At the same time, however, the variance of the remainder would increase, possibly quite substantially, if the coverage errors were at all serious. It is hoped that the simulation results just described can aid practitioners in assessing the trade-offs involved in such settings. Obviously, though, this paper is just the beginning of our attempts to understand more about the performance of raking estimators when used to make coverage adjustments. For example, we need to go on and explore the behavior of alternative variance estimation procedures (as suggested by the discussant when we delivered this paper). We also want to see how much difference there is in the mean square error if we iterate only a few cycles instead of attempting to achieve complete convergence.

ACKNOWLEDGEMENTS

The authors would like to extend their thanks to Ralph Folsom of the Research Triangle Institute who discussed this paper (and the previous one) at the San Diego meetings. Among our colleagues at SSA who made important contributions to this paper were Linda DelBene and Beth Kilss. The paper was typed by Joan Reynolds and Helen Kearney.

FOOTNOTES

1/ When this paper was presented in San Diego, we also provided results for 5×5 and 6×6 tables. The patterns exhibited by all the simulations were roughly the same; hence, we have restricted ourselves just to the 4×4 and 7 x 7 tables, i.e., to the extremes.

2/ In our original paper we did not include this factor. The discussant suggested that at a minimum we compare the raked and simple ratio estimators as well as raked versus unraked estimators. We were happy to oblige.

TTEM	DEGRES OE DEPBNDEVCE BETVEEN KAKED VARIABLES AND UNCONSTRAINED MEAM											
	COMPLETE IVDEPEVDEVCE			COMPLETE DEPENDENCE			Sartial verevobivee					
	RAKED MARGTVALS		$\begin{gathered} \text { EIMPLE } \\ \text { RATTO } \\ \text { ADJUSTMEVT } \end{gathered}$	FAKED MARGIVALS		SIVLLE RATTO ADJUSFMENI	FAKED VARSIVALS		SIMLLA RASIO ADJUSTMEVT			
	UNRELATGD	RELATED		WNRELATED	RELAESD		JWRELATED	RELATSD				
	PART T - 'WMIEOKV-TYLS' VARTABLES											
WNRTASRO CASS												
7×7 RAKCD DATA BY												
SAMPLE STEF												
50........	0.8542	1.0635	0.2240	-2.313E	-2.0879	0.7365	-0.5005	0.1573	1.1651			
100...........	0.1211	0.2206	0.0289	0.1410	0.4708	0.4330	O. 5066	0.6021	0.5130			
400...........	0.1213	1. 1235	0.1438	0.1758	0.6536	0.3790	$0.518{ }^{\circ}$	0.6611	0.5056			
800...........	-0.0014	-0.0235	0.0253	0.1704	0.6550	0.4296	0.4208	0.5443	0.5163			
4×4 RAKFD DATA BY SAMPLE STZE												
SAMPLE STZE 50............	0.2748	0.4320	-0.0080	-0.0.045	-0.0260	0.5403	0.0800					
100.............	-0.04F8	0.1888	-0.0207	0.2760	0.5812	0.1742	0.3324	0.6150	0.3150			
400...........	0.0573	0.0806	0.0643	0.3408	0.7570	0.2856	0.4408	0.5835	0.4244			
801..........	-0.0211	-0.0070	0.0135	$0.3341]$	0.7714	0.3424	0.3730	U. 5123	0.4037			
BTASED CASE												
$\begin{gathered} 7 \times 7 \text { RAKBI DATA BY } \\ \text { SAMPLG STZG } \end{gathered}$												
50............	0.3277	0.71 .4	- 3.1900	33.6511	24.4543	13.0715	21.1873	10.0535	17.3114			
100...........	0.095 .8	0.3035	-0.0325	42.4355	24.8568	13.8052	25.3351	21.7162	16.9212			
400............	-0.2604	-0.1404	- 13.0193	4.5963	20.5871	13.0881	25.001 .2	21.5704	17.0000			
900...........	-0.f183	-0.4002	-0.1175	41.5615	29.7025	14.0438	24.7980	21.4066	15.90×5			
4×4 RAKE, D DATA $5 Y$												
CAMPLE STR												
50...........	-0.0285	0.13 F 2	-0.1142	27.6970	27.1578	13.2422	22.8496	26.4130	16. 26 ± 3			
100..........	-0.2712	1).0143	-0.082F	30.7580	28.1971	13.0016	23.0825	20.7306	1f.0411			
400............	-0.4144	-0.143F	-0.0404	30.9550	28.6269	13.2908	23.0736	20.7322	12. 2547			
200..........	-0.5.04	-0.3188	-0.0018	30.0702	28.7340	13.3653	23.8665	20.6577	16.2436			
	EART IT - 'EXVOMbNTAL-TYFe' vantables											
UNAT 4 SED CARS												
$\begin{gathered} 7 \times 7 \text { RAREI DATA SY } \\ \text { SAAPLE STZF } \end{gathered}$												
50...........	1.36.34	1.4368	-0.4890	-2.7747	-2.6520	1.5430	-0.0020	-3.2713	2.1269			
100...........	0.1989	0.1502	-0.0586	0.5045	0.7467	U. 2276	0.5165	0.5434	0.2449			
400.	0.1886	0.2208	0.1940	0.4734	1.0457	0.2623	0.5880	0.7766	0.5126			
800...........	0.0165	-0.0281	0.03 .94	0.4884	1.0333	0.3851	0.4448	0.5609	U.4271			
4×4 PAKED DATA BY CAMPLE STDE												
50...........	0.375 f	0.4388	0.1071	-0.021e	-0.4005	1.3722	-0.0115	0.2325	1.7486			
100............	0.0017	0.2128	-0.0780	0.6481	0.8 .224	-0.0588	0.3490	0.5738	0.1018			
400...........	0.1093	0.1595	0.0819	0.6575	1.1933	0.1901	0.5201	0.7190	0.3479			
800...........	9.9080	0.0272	0.0416	0.6844	1.2164	0.3189	0.4417	0.6174	3.3598			
STASED CASS'												
7×7 RAKS DATA BY												
50...........	0.1573	0.9231	0.7470	5F.9549	41.2274	24.3113	35.1305	32.7098	29.4224			
100...........	-0.7540	$0.854{ }^{\circ}$	0.0793	60.8573	47.9980	23.0271	42.4058	35.8049	27.7306			
400...........	-0.0001	-0.4224	0.2679	70.2185	49.4622	23.471 .5	42.0293	36.1222	28.1199			
200..........	-0.4100	-0.0805	0.0870	70.2537	40.6654	23.6101	41.6778	35.7550	28.0209			
4×4 RAKDD DATA BY												
50...........	-0.118f	0.2331	0.1852	62.2009	44.2236	23.2652	37.1610	33.0016	28.0304			
100...........	0.2176	0.3780	0.0732	F.E. 706 \%	46.88 .8 .6	21.7250	40.0787	34.1922	25.4520			
400............	-0.12ff	0.2878	0.268%	67.2370	47.7021	22.2779	40.1911	34.6547	25.8656			
800...........	-0.2043	-0.0157	0.2488	67.3775	48.0134	22.4516	40.1132	34.5158	26.9212			

 BITASED OR YOT
-

IVPI ASED CAER

$7 \times 7 \text { RAKDD. DATA } B Y$									
50...........	29.0885	23.075 E	17.0181	-2.9858	1.2424	7.5032	14.0071	8.725 E	7.9716
130.	9.7853	10.6.40E	7.5243	-83.0342	$-40.86 .34$	-14.2655	-19.4723	-16.76,12	-17.1507
400............	5.1158	4.412F	1.4203	-84.0395	-50.7400	-14.58920	-10.7920	-20.9520	-22.1180
200...........	0.0051	1.4003	0.2080	-85.3505	-50.4620	- 15.3240	28.7347	24.2063	23.0474
4×4 RAKOD OATA ${ }^{\text {SY }}$									
SAMPLE SIZE									
50.	12.83F8	12.2242	4.5084	-3.0215	0.7623	2.9159	1.7325	5.9882	2.314 .4
100...........	5.070°	F. 1514	3.2822	-50. 5525	-38.5023	-18.1085	-20.3243	-17.7883	-10.2403
400............	2.2FS1	2.6544	0.9553	-58.3077	$-42.4 E E \cdot 4$	-14.4232	-20.3250	-21.7030	-2i.d655
800...........	-0.4122	0.6 .650	0.0211	-73.3581	-47.7633	-15.1337	27.3124	$23.2<{ }^{\text {203 }}$	24.6019
BIASSD CASE									
7×7 PAKTO DAIA BY									
SAPPLE ETCS									
50...	81.27 F 1	71.0030	43.3060	410.3490	39.276]	20.3211	Fib. 4456	47.4610	21.2695
100...........	6F.58.78	53.2557	26.6506	-80.6721	-0.8257	-3.2865	21.2143	15.2024	-3.7944
4100.	50.2058	34.0251	23.2212	-84.5035	- 10.7395	5.8004	14.5021	3.3790	-14.2437
800............	4 F .4119	25.7202	11.5421	+5.50e\%	23.7086	3.7813	7.3594	-1.9310	-11.7206
SAMPLF SIZS									
50...	70.f0F5	57.5.538	2F.5813	8.3320	22.1040	34.5830	3E.4E1.	21.1304	31.1017
1.00.	5.7 .3808	43.5045	19.4036	-58.2847	2.0530	8.2120	15.4200	?. 5050	-8.7511
409.	47.2098	34.5074	22.6.48?	-72.10.1	- 12.1244	5.5602	13.5652	2.684\%	-11.4072
90...........	40.0275	21.741°	0.4810	-74.0036	26.5985	-4.0235	6. 0843	5.9180	-16.015
				HART TI - 'EXYOMEMTLAL-TYEE'VARIABLES					
TVSTASED CASE									
7×7 RAKED DATA PY									
SAMPLE SLCE									
53......	30.0734	30.6210	18.220 F	-5.1013	-0.020	18.4081	14.2048	10.4469	18.0042
100..	0.0488	0.5417	7.8945	-6.3.3027	-38.3704	-15.56,53	-16.0576	-15.3555	- 7.7314
400...........	5.870¢	4.7602	1.7130	-F.C.858	-44.1341	-13.1318	-17.3402	-17.1112	-1..7531
800...........	-0.6070	0.1207	0.0867	-68. 2078	-48.4882	-12.8178	-20.3352	-18.3950	-17.1685
4×4 PAKPD DATA BY									
SAMPLE STZF									
50......	10.8215	10.3200	8.1118	-4.0458	-0.1302	12.2000	0.F703	4.4049	15.4E\%
100............	4.3724	4.754 .0	2.7422	-80.3050	- 38.2203	-10.4866	-20.2154	-17.8034	-10.850
401]............	3.2221	2. 0617	1.0779	-65.7444	-42.38,84	-13.3886	-10.2563	-18.8287	-14.1187
800...........	1.4020	0.721°	0.1658	-82.7701	-46.0720	13.6757	-19.4135	17.5520	17.1020
BTASED CASP									
7×7 RAKED DATA RY									
SAMLLE STCE									
50...........	71.8517	60.0380	43.8727	71.0420	6.0.4433	49.4073	63.5504	53.2207	46.1719
100...........	65.4007	53.6.405	20.4283	-15.5542	25.0653	3.2552	30.1020	24.1553	1.5467
400............	40.1210	38.6398	20.5335	-17.2178	21.2627	19.0808	23.3432	18.0932	4.15 .54
900...........	32.0277	15.8039	5.2030	21.1441	7.4372	6. 0432	24.5550	9.0054	3.1809
4×4 RAKRD DATA BY									
SAYPLE STZE									
50.......	62.7472	59.3478	31.104%	47.8024	40.06 .86	43.710°	42.2590	43.9682	41.9225
100..........	53.7705	45.2523	22.3443	-14.5031	20.8135	-1.2843	26.735E	21.4924	-1.6753
400...........	44.4716	37.2036	28.70 .54	-17.6611	16.366%	17.4082	10.8806	16.1500	3.7769
800............	27.0033	12.141 F	2.86 .74	-16.2339	7.5887	6.7783	24.7786	7.7126	6.0839

 AND VQETHER SAYPLE DATA IS BIASED OR NOT

TTEY	DEGKEE OF DEPENDENCE BETNEEN KAKED VARIABLES AND UNCONSTRAIVED MEAU								
	COYFCET'S IMDEPENDEVCE			COMPLETEA DELEVDEVCS			HARILAL DELGVDEVCE		
	PAKEO MARG TVALS		$\begin{gathered} \text { STMPLE } \\ \text { PARTO } \\ \text { ADJUSTYENT } \end{gathered}$	KAKBD MARGTVALS		STMPLE RATTO ADJUSTMEVT	RAKSD VARGIVALS		EIGPLE FATTO ADJJETMENT
	URTELATED	RELATED		INRELATED	RELAI'S		UWRLLASD	KELATKO	

PART I - 'UNIFORM-TYEE' VARIABLES

