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I. Introduction 

In many sample surveys, members of the tar- 
get population cannot be identified in advance 
of the selection of sampling units. An example 
is the population of "persons 65 years of age 
or over." In sampling from a geographic area, 
one can only select households and then enquire 
at each sample address whether persons 65 or 
over are present. This process is called 
screening. 

In the case of screening for the elderly 
there are Census counts available that make it 
possible to fairly accurately determine the num- 
ber of households that must be selected in order 
to obtain the desired number of persons 65 or 
over. In many other screening situations, how- 
ever, prior information is not available and 
one must rely heavily on subjective judgment. 
How many households must one screen, for example, 
in order to obtain 100 interviews with widows 
(female) under 35 years of age? Or how many 
screeners are required in order to find a sample 
of 100 persons who call themselves "born-again 
Christians"? 

The nature of field operations in a survey 
research organization is such that when the 
required number of members of the target popula- 
tion has been found one cannot simply cut off 
the screening process at that point. It is well 
known that field personnel tend to cover the 
easiest cases first, saving refusals and not-at- 
homes until the clean-up stage of the field per- 
iod. For all of the usual reasons of selection 
bias, a sample that has been cut off cannot be 
defended as a probability sample from any pop- 
ulation that can be easily described. The 
total number of selected screeners must be com- 
pleted (up to the point of budgetary restric- 
tions on call-backs). Thus, in a state of 
great uncertainty about the eligibility rate, 
i.e., the probability that a screened sampling 
unit will produce one or more members of the 
target group, one runs the risk of having to 
perform unnecessary screening if the number of 
original selections is too large. If +he 
field procedures require interviewing on the 
spot when a screener is successful, then one 
must also pay for unnecessary interviews. At 
the other extreme, a screening sample that is 
too small to produce the required number of 
eligibles means that an additional sample will 
have to be launched with all of the concomitant 
start-up costs. It is probably fair to say that 

survey organizations tend to be conservative, 

in the sense of sending out a number of 
screeners that is on the high side~ rather 
than risking undershooting of the target group. 

An approach that is designed to remedy some 
of these problems and provide greater control 
over field operations is called batching. The 
incremental cost of selection of sampling units 
is usually very small. Thus, a large number, 

B, of batches of size k is selected in such a 
way that each of the batches is a probability 
sample from the frame of sampling units. The 
B batches constitute a set of interpenetrating, 
or replicated, subsamples so that any subset of 
b batches (if the response rate is adequately 
high) can be pooled and treated as a single pro- 
bability sample for the purpose of estimation 
and inference. 

A sequence of batches of size k is metered 
out to the field during the screening process; 
i.e. if the first batch does not produce suffi- 
cient eligibles, a second batch is launched, 
and so on, until the desired number of eligibles 
has been obtained. When the report that the 
required eligibles have been found reaches the 
main office, field personnel are instructed to 
complete all cases in the batches presently in 
the field, but no new batches are launched. 

If the batch size k is small, one has 
accordingly a great deal of control over the 
field work, and the number of excess screeners 
and interviews is kept at a minimum. If, how- 
ever, the start up cost of additional batches 
is high, there is reason to set k equal to 
larger values. In short, one must balance the 
cost of launching new batches against the cost 
of overrun, or performing unnecessary screening 
and interviewing. The determination of the 
optimal value of k, the batch size, is the sub- 
ject of this paper. 

2. The Objective Function 

Def i ne 

r = the number of eligible units that is 
des i red ; 

n = a random variable, the number of sampl- 
ing units that must be screened in 
order to find r eligibles, (n > r); 

k = the predetermined batch size; 

b = a random variable, the number of 
batches of size k required to find r 
eligibles. (bk .>_ n); 

c = the start-up cost of launching each 
additional batch after the first; 

c = the cost of screening each additional 
s unit beyond the n units required to 

find r eligibles. I 

The cost associated with batch size k is con- 
sidered to be a linear function of the number of 
batches after the first and the number of excess 
screeners (and possibly excess interviews~). 

Cost(k) = (b-1)c + (bk - n)c . (2.1) 
s 

The expression above can be simplified by 
defining: 

c* = c/c , the start-up cost relative to the s 
unit cost of excess screening, 
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and writing 

Cost*(k) = (b- I)c* + (bk- n). (2.2) 

With n and b random variables, the objective 
in choosing k is to minimize the expected cost. 

y(k) = (c* + k)Ek(b) - E(n) - c*, (2.3) 

or, ignoring the constants E(n) and c*, to 
minimize 

y*(k) = (c* + k)Ek(b). (2.4) 

3. The L Expected Value of b 

The subscript k in the expression E. (b) 
denotes that the expected value of the number of 
batches required to find r eligibles depends on 
k, the batch size. As discussed previously, 
proper field procedures require that the batch 
that contains the rth identified eligible (and, 
correspondingly, the nth screened unit) must be 
screened completely so that the pooled set of b 
batches can be treated as a probability sample. 
It follows that- 

Pk(b = i) = P([i - l]k + 1 < n <_ ik). (3.1) 

Thus, 
oo 

Ek(b) = ~ iP([±- 1]k + I < n <_ ik) 
i=I 

In the case where an interview would be per- 
formed on the spot if an eligible were found, 
c contains a factor equal to the cost of an 
s 

excess interview weighted by the prior pro- 
bability of finding an eligible respondent. 

= ~ i [P(n > [i - 1]k + I) -P(n > i k + I) 

i=I 

= ~ P(n > i k + I). 

i=O 

(3.2) 

4. Eyaluation of the Expected Number of Batches 

To examine the characteristics of the opti- 
mization process, we assume that successive screen- 
ings are independent Bernoulli trials, with 
unknown p, the probability that a screened unit 
produces an eligible. We call p the eligibility 
rate. 

Uncertainty about p is expressed by means of 
a beta prior density with parameters r' and n" 

pr'-1 n'-r'-1 
fB(Plr ',n')~ (l-p) , 0 < p < I. (4.1 

It follows that the probability mass function 
for n, the number of trials to obtain r eligibles, 
is a be ta  mix tu re  of Pasca l  mass f u n c t i o n s ,  and 
we can write 

Ek(b) = r. GBPa(ik + l l r , r ' , n ' ) ,  (4 .2 )  
i=O 

where G p a(-Ir,r',n') is the right tail area of the 

b e t a - P a s c a l  d i s t r i b u t i o n  with p a r a m e t e r s  r , r ' , n ' . 2  

After considerable struggle, a closed-form 
expression for the evaluation of (4.2) does not 
appear to be obtainable, hence a computer program 
has been written to calculate the required tail 
areas and sum the terms until the incremental con- 
tribution to the sum is very small. A check on 
the adequacy of this approximation is obtained from 
the fact that Ek(b) for k = I is equivalent to 

E(n) = r(n' - 1)/(r' - I), (4.3) 

the mean of the beta-Pascal distribution for r, r', 
n T . 

Furthermore, there is no neat analytical ex- 
pression that enables one to differentiate the 
expected cost (2.4) and solve for the minimizing 
k, but with a vector of values of Ek(b) it is 

easy to use a computer routine to search over 
successive values of k for the minimum cost. As 
will be shown in the next section, the expected 
cost function is not perfectly U-shaped, but, 
rather, may have several local minima. 

See, e.g., Raiffa and Schlaifer, Applied 
Statistical Decision Theory, MIT Press, (1968) 
I~P~ 2 3 ' 7 - 2 4 1 .  " 

5. An Example 

A recently encountered real world example is 
as follows: A large, national organization sells 
a certain general service to business firms. 
Interviews are desired with 100 business firms 
who have purchased a particular type of special 
service under the heading of the general product. 
The only way to identify users of the special ser- 
vice is by going to regional offices (approximately 
100 of these nationally) and examining records for 
the selected firms. For the national organization 
to use the regional facilities, considerable intra- 
company negotiation and planning is required. The 
screening of the records at the regional offices 
requires the use of staff who must be relieved 
of their usual duties and specially trained. If 
the initial batch of k screeners is insufficient 
to provide the necessary firms with the particu- 
lar service, then subsequent batches would require 
additional negotiation, planning, and set-up at 
the regional offices. The national organization 
wants to avoid having to approach the regional 
offices any more than absolutely necessary. On 
the other hand, the screening of records is an 
expensive and time-consuming operation, and the 
total amount of screening must be kept within 
reasonable limits--thus k should not be too large. 

There is uncertainty about the exact value of 
p, but it is generally agreed that, whatever the 
prior distribution, E(p) is about 0.2, i.e., about 
one in five screened firms will have the special 
service of interest. Fig. I shows three possible 
beta prior densities for p, all with the same 
expectation, 0.2. As the parameters r' and n' 
increase, the dispersion of the distributions 
decreases. Thus the distributions represent a 
range of possible subjective assessments of the 
eligibility rate before screening, from the 
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rather vague and informationless case (r'=2, 
n' =I0) to the sharply spiked density about 
p = 0.2 (r' = 200, n' = 1000). 

If the ratio r'/n' is held constant at p = 0.2 
and r' and n' allowed to increase to infinity, 
the prior density approaches a single spike and 
the corresponding beta-Pascal distribution for n, 
the number of trials required to produce r eligible~ 
approaches a Pascal distribution with parameter 
p = 0.2. 

With the aim of finding r = 100 eligible units, 
values of Ek(b) were calculated for each of the 

parameter pairs (r', n') for successive k from I 
to 1000 using (4.2). Fig. 2 shows a rough sketch 
of the objective function involving k, Ek(b), and 

, 

an assumed value of c = 20; i.e., the launching 
of a new batch is twenty times as expensive as 
performing an unnecessary screening. It can be 

seen that for the relatively diffuse case (r' = 2, 
n' = 10) the unique minimum is attained with 

k = 185. For the tighter prior (r' = 20, n' = 100) 
the minimizing value of k is 146, and for the 
prior with the smallest variance (r' = 200, 
n' = 1000), the minimum minimorum is attained at 
k = 281. Although the exact minimizing values of 
k differ for the three priors, one can conclude 
from an examination of Fig. 2 that by choosing 
k between, say 150 and 250, one would be satisfy- 
ing all three of the sets of subjective beliefs. 

The objective function for the tightest prior 
(r' = 200, n' = 1000) has much more marked highs 
and lows than the curves for the more diffuse 
priors. It can be seen that k = 594 yields almost 
the same value as does the optimal k = 281; yet 
there is a local maximum between the two values 
of k at 438, with a value of the objective func- 
tion that is about 34 percent higher than the mini- 
mum. An intuitive explanation of this phenomenon 
is as follows: The expected number of trials 
required to obtain 100 eligibles is E(n) = 502.01. 
At the optimal value of k, 281, the expected num- 
ber of batches that will be launched is 2.13--thus 
the expected total number of screeners released 
to the field is about 600, and the expected over- 
run in screening is about 20 percent of the 
expected number of trials needed. Similarly at 
k = 594, the expected number of batches is 1.05 and 
the same argument applies. For k = 438, however, 
the expected number of batches required is closer 
to 2, and in the event that the second batch is 
needed in order to find 100 eligibles the expected 
overrun is about 75 percent of E(n), thus the 
higher exp-cted cost for that batch size. 

As a further example, the objective function 
for the three priors is sketched in Fig. 3 for 
the case c* = 100. As one would expect, with the 
cost of a new batch relative to an unnecessary 
screening increased, the optimal value of k moves 
to the right. Also, in the case of the extreme 
prior (r' + 200, n' = 1000) the values of the 
expected cost for the various locally minimizing 
k decrease as k increases. (The minimizing value 
k = 599 is the global minimizer although the rest 
of the function is not shown.) The intuitive rea- 

son for the multiple minima and maxima is as 
discussed above, except that with the higher cost 
of a new batch there is a greater penalty imposed 
on the smaller near-optimal batch sizes, account- 
ing for the downward sloping appearance of the 
wavy curve. 

6. Conclusion 

This paper demonstrates the feasibility of 
brute force calculation of expected numbers of 
batches and minimizing batch sizes, k, for vari- 
ous cost and prior parameter assumptions. 
Although it is difficult to draw general conclu- 
sions from particular examples, we have shown that 
in a large scale sample survey where the stakes 
are high and great expense is involved in all stages 
of the operation it may be worthwhile to make a 
few computer runs to see the implications of vari- 
ous assumptions that might be made when screening 
is to be performed without precise knowledge of 
the eligibility rate. 

A curious result is that even when one is quite 
sure about the value of p (i.e., with a very 
tight prior) it is not necessarily optimal to send 
out a single batch with k equal to E(n). If the 
cost of a new batch relative to the cost of 
excess screening is high, the best batch size is 
higher than E(n) in order to allow for the 
uncertainty about the exact n required. If c* is 
small, it may be optimal to send out smaller 
batches. 

Note: Copies of the figures mentioned in the text 
can be obtained from the author, Professor of Quan- 
itative Methods, School of Business Administration, 
University of Washington, Seattle, WA 98195 
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