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ABSTRACT 

Previously, the author has developed several 
multivariate ratio and regression estimators for 
use in small and moderate size sample surveys. 
In this study, we examine the conditions under 
which these estimators are the most precise. Our 
results indicate that: (i) when all correlations 
are large, the estimator attributed to Olkin is 
the most precise; (2) if all correlations are 
fairly large, or if the correlations between the 
auxiliary variables are small and those between 
the auxiliary variables and the characteristic of 
interest, y, are not small, then the geometric 
ratio estimator appears to be the most precise; 
(3) when all correlations are small, then the 
mean estimator (~) which does not utilize infor- 
mation from the auxiliary variables is the 
estimator of choice. These results are in 
agreement with those obtained through Monte Carlo 
simulations of five real populations. 

I. Introduction 

Several authors, including Olkin [3] , Raj 
[4], Rao and Mudholkar [5], Shukla [6], Singh [7], 
and Srivasta [8, 9, i0] , have proposed ratio- 
type estimators which utilize data from several 
auxiliary variables. These estimators involve 
the use of unknown weights which have to be 
estimated and assume knowledge of the population 
means of the auxiliary characteristics used. 
These estimators do not appear, from the points 
of view of users, to be satisfactory. Sukhatme 
and Chand [ii], proposed a ratio-type multi- 
variate estimator which does not involve unknown 
weights and which, at most, assumes knowledge 
of the population means of the auxiliary charac- 
teristic least correlated with the characteristic 
of interest. They used a multiphase sampling 
plan where information from one auxiliary 
variable is gathered at each phase and used in 
the final estimation process. This estimator 
will not be further considered since this paper 
is concerned with one stage or one phase sampling 
procedures. 

In this paper, we shall present several 
multivariate ratio and regression estimators 
which had been previously developed by the 
author [2]. These estimators only assume that 
the sample means of the auxiliary variables are 
known and that a simple random sample (one stage 
or one phase) is drawn. Thus, we believe that 
these estimators are useful in smalland moderate 
size sample surveys. We shall compare their 
approximate variances so that judgements can be 
made concerning the best choice of estimators in 
finite population sample surveys. 

2. Notation 

We shall specify that the population is 
finite and contains N units. For the i th unit, 

the vector (Yi' Xli' x2i .... , Xpi) gives the 

(p + i) variate vector - each of which are assumed 
to be non-negative. This requirement of non- 
negativity is not essential, but is the typical 
situation in practice and simplifies the late 
manipulations. 

The N units of the finite population are: 

YI' Y2' "''' YN with Y unknown and to be 

estimated, 

XII, XI2 , ..., XIN with X 1 known andpositive, 

X21, X22 .... , X2N with X 2 known and positive, 

Xpl, Xp2, ..., XpN with Xp known and positive, 

Suppose that a simple random sample of size 
n is observed from the population and the pop- 
ulation mean, Y , is to be estimated. 

3. Multivariate Ratio and Regression Estimators 
and their Approxima'te Variance 

Since the most frequent applications for 
these methods are likely to be when there are two 
auxiliary variates (x-variates), the methods are 
described for this case. However, parts of these 
developments can be easily be extended to the 
more general case. 

In the approximation of the various 
functions, the complicated form of the terms of 
the order of n-2 makes it difficult to consider 
them. Accordingly, only terms of the order n -I 
will be considered. 

Mean: 

- ZYi/n 

V(y) = l-f S 2 , 
n y 

where S 2 = E _~)2 y (Yi / (N- i) 

Univariate Ratio with x.: 
i 

(3.1.1) 

(3.1.2) 

YR. : y Xi/xi (3.2.1) 
l 

V(~R)_ l-f ~2 (C2_2C + C 2 ) (3.2.2) 
n y x i YXi i 

where Ei is the sample mean of the variate, X i, 
and C's are the usual coefficients of variation. 

Olkin : 

~.~ _ _ 

YOLK = Wl r l  X1 + w2 r2 X2' (3.3.1) 

where r = ~/x , y and x are the usual sample 
i i i 
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meanS, and w I + w2 : 1 are chosen so that the pre- 
cision is miNimiZed. 

For this estimator, Cochran [I] has given 
that 

2 N 

2V12 + ) V(YoL K) = (VII V22- VI2 )/(VII- V22 

(3.3.2) 

where V.. - l-f ~2 (C 2_C -C + C ) 
13 n y yx i yx 3" x 1"x j 

N 

V(YoL K)__ can be rewritten in the form 

N 

V(YoL K) = 

V(YRI) V(YR2) - cov 2 (YRI, Y~R2) 

C 2 l-f (C 2 - 2C + ) (3.3.3) 
n x I XlX 2 x 2 

Average Ratio: 

When w I = w 2 = 1 , the Olkin estimator 
becomes 2 

YMAVG = 2- x I 
(3.4.1) 

N l-f ~2 2 
V(YMAvG ) = ~ (4C -4C - 4C 

Y YX I YX 2 

C 2 C 2 + 2C + ) 
x I XlX 2 x 2 

(3.4.2) 

r.J r.~ 

V(YRI) + V(YR2) 
l-f ~2 

2 4n 

(C 2- 2C + C 2 ) 
x I XlX 2 x 2 

(3.4.3) 

- l-f ~2 2 
: V(y)+(-~- n ) (C + 2C 

x I XlX 2 

C 2 - 4C - 4C ) 
x 2 YX 1 YX 2 

(3.4.4) 

Geometric : 

Another alternative estimator to be 
considered is 

YMG = ~ ( i X2) 

x 1 x 2 

(3.5.1) 

V(YMG) = V(YMAvG) (3.5.2) 

Linear Regression: 

b I X I ) YMLR = ~+ (21- +b2 - x2) (3.6.1) (X 2 

V(~MLR) : l---f ~y2 - b2 $2 - b2 $2 - blb S x l x ~ 2 n  i x I 2 x 2 2 

(3.6.2) 

E 2 2 +P _ = l-fn S2y - (O-x ly 
YX 2 

2pyxl pyX2pXIx2 ) / (l_Pxl2 x2)~ (3.6.3) 

where b I and bp are found by the usual least- 
square methods, and the p's are the usual cor- 
relation coefficients. 

4. Comparisons of Variances 

Cochran [I], in theorem 6.3, clearly states 
the conditions under which it would be 
advantageous to employ the univariate ratio esti- 
mator over the mean estimator. This theorem 
shows that the issue depends on the correlations 
between y and x and on the coefficients of vari- 
ations of these two variates. Thus, (i) if the 
auxiliary variable, x, has a coefficient of 
variation which is more than twice as large as 
that of y, then this auxiliary variate should not 
be used in the estimation process since the 
sample man would be more precise; (2) if the 
coefficients of variation of y and x are approxi- 
mately equal (as in the case when x. is the 
value of Yi at some previous time) a~d the cor- 
relation between y and x is greater than 0.5, 
then the univariate ratio estimator is the more 
precise. Of course, this theorem only applies 
to those samples which are large enough for the 
approximate formula for V(Y R) to be valid. 

The development of the multivariate linear 
regression estimate specified that the regression 
plane is approximately linear. Thus, for large 
n, it seems plausible that, among all linear 
estimators, the multivariate linear regression 
estimator would yield the smallest variance. 

It is also quite clear that the multivariate 
linear regression estimator can be more precise 
than the mean estimator when Pyx ' Pyx ' and 

2 
p are positive since, from equations (3.1.2) 
XlX 2 

and (3.6.3), we have that 

V(y) - V(Y~"R)mm > l-__ff $2(p2 _ 
n y yx I 

2 
2pyxlpyx2Pxlx2 + PYx2) / 

2 (l-p ) 
XlX 2 

> 1-:f S 2 ( 2 2pyxl p 
n y Pyx I- yx 2 

2 2 p ) / (1 -p  ), if 
Yx 2 XlX 2 

p > 0 
xlx 2 

l-f S 2 (p _ )2 / 
n y yx I Pyx 2 

2 
(l-p ) 

XlX 2 
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which is positive for p and p positive. 
YX 1 YX 2 

In most applications, Pyx ' Pyx ' ann p will 
1 2 XlX2 

be positive. Under these circumstances, the 
largest gains will be achieved when p is 

XlX2 
large and the correlation of y with x I is as 

different from that with x 2 as possible. 

Olkin [3] gives the theorem which states 

that, if p >- q, then V(?OLKIP) _< V(YOLKIq) where 
p and q are the number of auxiliary variables 
used in the estimation process. The practical 
relevance of this theorem is that it suggests 
the conditions under which the Olkin estimator 
(using optimal weights) is likely to be superior 
to the univariate ratio estimators which can be 
derived from the Olkin estimator setting 
w I - i, w 2 = 0. Thus in trying to decide which 
estimator to use, plot the graph of Yi against 

Xli and x2i. If the relationships are roughly 

linear and contain the origin, then the Olkin 
estimator may be more precise than either of 
the univariate ratio estimators. 

Olkin [3] also shows that if all of the 
coefficients of variation are approximately 
equal and if the correlations between all of 
the variables are also approximately equal, then 
the use of the auxiliary variables in estimation 
may result in increased precision over the mean 
estimator if p > i/(p + i). Thus, the Olkin 
estimator may be more precise than the mean 
estimator if the coefficients of variation of 
the axuiliary variables are approximatley equal 
and their correlations with Yi greater than 
i/(p + i). 

The Olkin estimator was constructed to 
minimize the variance of the expression: 

YOLK = WlrlXl + w2r2X2 

subject to the restriction that w I +w 2 = i. 
Clearly, this minimization is over a wider class 
than the class of linear unbiased estimators. 
Thus, the Olkin estimator would seem to have the 
potential to be more precise than the multivari- 
ate linear regression estimators. However, in 
view of the amount of computations involved, 
this estimator may be most useful "in small 
surveys of a specialized nature". [i] 

Of course, the above discussion tacitly 
assumes that the correlations are fairly large 
since, if the correlations between y and the 
auxiliary variables, xj, are small: (a) it is 
well known that the mean estimator may be more 
precise than the univariate ratio estimators; 
(b) we can rewrite the formula for the variance 
of the Olkin estimator, equation (3.3.3), in the 

form: 

f--~ ~ )] 
V(YoLK ) ~ --iV(YRI) V(YR2) - cov 2 (YRI,YR2 / 

(i-f) (C 2 - 2C + C 2 ) ?2 
n x I XlX 2 x 2 

and the numerator is large in relationship to 
the denominator for the small correlations, p 

YX 1 
PYxl , p and p ; and (c) we have stated 

YX 2 XlX 2 
earlier that the multivariate linear regression 
estimator was designed to take advantage of the 
correlations between y and the auxiliary variates. 

From the formulae, (3.4.3) and (3.5.2) for 
the approximations (to the order n-l) to the 
variance of the geometric and average ratio 
estimators, it is clear that when 

Cx 12 ~ Cxlx2± C 2x2, then V(YMG = V(Y~MAVG ) can be 

greater than either V(YRI) or V(YR2) - but not 

both. 

In summary to this point, the suggestions are 
(i) when the correlations between y and the 
auxiliary variates are large and the coefficients 
of variation are approximately equal, the Olkin 
and the multivariate linear regression estimators 
would seem to be the most precise estimators when 
n is large enough for the variance formulae to be 
valid. (2) If the correlations are large and 
the regression plane is approximately linear and 
contains the origin, use the Olkin estimator 
unless the calculations are prohibitive; if the 
regression plane does not contain the origin, 
use the multivariate linear regression estimator. 
(3) When the correlations between y and Xl, and 

y and x 2 are large but Pxlx2 is small 

2 2 
(C ! C ~ C ), then use the geometric or 

x I x 2 XlX 2 

separate ratio estimators. Now it remains to 
decide which estimator to use when the correla- 
tions are small or moderate. 

It is clear that the univariate ratio, the 
Olkin and the multivariate linear regression 
estimators rely heavily on the correlations 
between y and the auxiliary variates. Thus we 
shall now restrict our attention to comparisons 
between the geometric (and the separate ratio) 
estimator and the mean estimator. 

We can rewrite V(YMG)-- V(YMAvG ) in the form: 

V(Y~MG ) = V(Y~MAVG )" __l-f S 2÷ l-f Cf2 
n y -~n 

(C 2 + 2C + C 2 - 4C - 4C ) 
x I XlX 2 x 2 YX 1 YX 2 

- l-f- 2 
= V(y) + y2 (C2 + 2C + C - 

n x I XlX 2 x 2 

4C - 4C ) (4.1) 
YX 1 YX 2 

Thus, if all of the correlations, p , p and 
XlX 2 YX 1 

PYx2 , are small but the coefficients of variation, 

C 2 , C 2 and C 2 are not too small (thereby 
x I x 2 Y 

implying that C , C and C are small), 
XlX 2 YX 1 YX 2 
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then V(YMG) = V(YMAvG) -> V(y). If the coef- 
ficients of variation of y and the auxiliary 
variates are approximately equal, then equation 
(4.1) becomes: 

= (YMAvG) = V(YMG ) V V(y) + ~ ~2 

(2 + 2p - 40 - 4p ) C 2 
XlX 2 YX 1 YX 2 Y 

=> V(YMG) = V(YMAvG) -< V(y) when (i + Pxlx2) -< 

2(p + p ). 
YX I YX 2 

Then the geometric and separate ratio 
estimators would seem to be the estimators of 

choice when Pxlx2 is small or negative and PYxl 

and p are of moderate size - this size 
YX 2 

depending on the value of Pxlx2. Of course, if 

PYxl and PYx2 are both greater than 0.5, then 

these two estimators appear to be more precise 
than the mean estimator. Lastly Cxlx2 is very 

small but C 2 and C 2 are not too small (thus 
x I x 2 

Px x is small), equation (4.1) reduces to: 
12 

~ - l-f ~f2 
V(YMG ) = V(YMAvG ) - V(y) + 

(C 2 C 2 - 4C - 4C ) 
x I x 2 YX 1 YX 2 

= V(y)+ ~nf Y 2 (C21 C 2 -x2 

4p C C - 4p C C ). 
YX I Y x I YX 2 Y x 2 

Thus, if 4p C > C and 4p C > C , then 
YX I Y x I YX 2 Y x 2 

the geometric and separate ratio estimators 
would seem to be the most precise. 

To summarize, when n is large enough for 
the variance formulae to be valid, the 
following are suggested: 

(i) If y and Xl, and y and x2, and x I and 

x I are all highly correlated and the coefficients 

of variation are also large, use the Olkin 
estimator when the regression plane is approx- 
imately linear and contains the origin unless 
the computations are prohibitive - if the 
computations for the Olkin estimator are too 
lengthy, then use the multivariate linear regres- 
sion estimator; when the regression plane is 
approximately linear but does not contain the 
origin, and the correlations and coefficients of 
variation are large, the multivariate linear 
regression estimator would seem to be the esti- 
mator of choice. 

(2) If all correlations are fairly large and 
the coefficients of variation are small, the 

geometric or separate ratio estimators may be the 
most precise. 

(3) If the correlation between x I and x 2 is 

small or negative and the remaining correlations 
are not very small, the geometric or separate 
ratio estimators again may yield the smallest 
variances. 

(4) If all correlations are small, use the 
mean estimator. 

In a separate work, Lynch [2] used 
Monte Carlo simulations on five natural popu- 
lations to ascertain whether the suggestions 

stated above for sample sizes large enough for the 
approximate variances to be valid, could be sub- 
stantiated for small or moderate n. In that work, 
the author used populations where the coefficients 
of variations varied from 0.i to 1.4, the cor- 
relation from about 0.i to about 1.0 and popula- 
tion sizes from 33 to 350. His results indicated 
agreement, in general, with the above findings. 

5. Summary and Conclusions 

Several methods of utilizing auxiliary 
variables in the estimation of some characteristi~ 
y, have been proposed and considered. These 
methods are generally referred to as ratio and 
regression estimators. In addition to improving 
the efficiency of the estimation procedure, one 
of the aims of these procedures may be to assist 
in the choice of the structure. In this work, we 
examine the conditions under which each of the 
given estimators are the most precise. 

Our results indicate that: (I) when all 
correlations are large, the estimator attributed 
to Olkin is the most precise; (2) if all correla- 
tions are fairly large, or if the correlations 
between the auxiliary variables are small and all 
other correlations are not small, then the geo- 
metric ratio estimator appears to be the most 
precise; (3) when all correlations are small, the 
mean estimator (~) which does not utilize 
information from any auxiliary variables is the 
estimator of choice. 
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