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1. Introduction

The type of estimator that forms the background
for this paper on link relative estimators is one
which uses a benchmark obtained periodically
together with a survey estimate of change for time
periods between benchmarks.

A benchmark is an essentially complete total for a
population and may be obtained from administrative
records, or censuses, or surveys large enough to
be considered sample censuses. The information
from which benchmarks are obtained may also
provide the entire or a major part of the basic
frame or 1list for the current (intervening)
surveys.

By a link relative we mean the ratio of a total for
a given period to the total for the same variable
in the preceding period for units reporting in
both periods. The Tink relative determines
relative change from one time period to the next.
The 1link relative estimator of a total is the
product of a benchmark and the link relatives for
the periods of time between the benchmark and the
current period.

The Bureau of Labor Statistics Current Employment
Statistics Program uses, essentially, a 1link
relative estimator. This program provides monthly
estimates of employment, hours and earnings of

workers on nonagricultural estabTlishment
payrolls. Benchmark employment is obtained every
year  or so from Unemployment Insurance

administrative records. Monthly estimates of
change between benchmarks are obtained from a
Targe voluntary monthly mail survey, known as the
790 Survey because of 1its schedule number. The
790 Survey data are obtained from cooperating
establishments on a voluntary mail ‘"shuttle"

schedule. Descriptions of the Current Employment
Statisticsl/Program and the 790 Survey are
available <.

From the definition of link relative estimators,
it follows that link relative estimators may yield

biased estimators of change. Establishments
change over time. They may go in and out of
business. They may change through mergers,

splits, purchases and sales (sometimes enough to
change their industry classification). Unless the
resulting biases are cumulatively very small, it
is desirable to use a supplementary sample or an
adjustment procedure or both. The 790 Survey
currently depends primarily on an adjustment
procedure with some updating largely at benchmark
times. These topics are not further discussed in
this paper. Rather, this paper is limited to the
discussion of link relative estimators from the
point of view of a simple statistical model.

Although the present paper is limited to statis-
tical models, we emphasize that the user of a
model must and does recognize that any model is
unlikely to be correct. Even if initially
correct, a model may become incorrect because of
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changes over time. Various industries and
establishments of various sizes within an industry
may be differentially affected by changes in the
economy, perhaps because different regulations
apply, perhaps because changes 1in technology
affect some establishments early. For these and
other reasons, models possibly applicable in one
industry or one time period may not be applicable
in another. A properly maintained probability
sample design may have a larger or smaller mean
square error (MSE) over time but will not become
inconsistent because of such changes. However,
probability sample designs also have problems. It
is costly and not always possible to maintain
probability samples of establishments, both
because  establishments change and because
cumulative nonparticipation may occur over time.
The effects of nonparticipation cannot be reduced
in certainty strata or in strata with Tlarge
sampling ratios. Rotation methods, for example,
obviously cannot help in certainty strata.

If a Targe enough proportion of the benchmark
total is in the sample, e.g., a high proportion of
the Targe establishments report, and if the error
in the model is not large for the remainder, then a
model dependent design (when carefully monitored
for changes) may provide good estimates of
population characteristics, and of the associated
mean square errors.

Our point of view also applies to the treatment of
nonresponse or missing data. In general,
establishments that do not respond should not be
assumed to be a random sample from the probability
sample. One may then ask, "Can a statistical
model be formulated such that, for that model, the
incomplete data are close enough to 'missing at
random', for useful estimators and evaluations to
be obtained? Such procedures can be studied and
evaluated for surveys for which data for
nonrespondents and benchmarks become available,
from time to time, as in the "790" survey.

The methods used clearly generalize to the utili-
zation of data for reporting units for which data
are available at non-consecutive periods. These
estimators will be discussed in a further paper.

2. Definitions and expected values. Model A.

The elements,(establishments) of the population
are denoted < by 1, 2, ..., N, and Ygi is the

random variable in which we are interested for
element (establishment) i at time g. The pop-
ulation total for time g will be denoted by Y_,
where 9
g

(2.1) Yg =44 Ygi , 9=0,1,..., t

and it is desired to estimate Yg or functions of
YO, Yl’ vees Yt' (Since Yg

it might be preferable to speak of predictors
rather than estimators; no confusion should result
from our terminology.)

is a random variable,



We suppose that at time O, a benchmark, Y6 , 1S
available, i.e. Yy is "close" to YO’ the total of
YOl’ ces YON . The set of elements reporting at
time, g, for which the Y91 needed for estimation

are avallable both for times g and g-1 is denoted by
sg sy 9§ = 1, 2,..., t.

Define
! = z
(2.2) Ygg i e Sg Ygi
and
(2.3) Yo1 47 4 gsg Yo-1
Thus, Yég and Yé-l g are sums of the values of Y

for the same establishments in periods, g-1 and g.

For some elements of the sample, data may be
available at one but not both times; such elements
are excluded from the estimator in the present

section, but should result 1in an improved
estimator, depending on the cost, time and
methodology used.
The sample 1ink relative, R! , is defined by the
equation, g
(2.4) R =

Y [

g-lg
It is noted that
(2.5) Yg = YORIRZ .o Rg s
where Ya
(2.6) R_ = s, a=1, ..., 49

a Ya-l

Because of the reasons discussed in the preceding
section, i.e. the population's change over time,
R} will usually be a biased estimator of R_, and,
hence, special samples or adjustment factors will,
in practise, be needed to avoid or reduce the
possibly large and cumulative biases. Generally,
the benchmark, Y6 ,» will be a good estimate of YO'
We define

2.7) Y!' = YXR: ... R' = Y!' R
(2.7) g 01 g g-17g

to be the Tink relative estimator of Y _, g=1, 2,

.., t. Thus, the link relative estimator is the
product of the benchmark and ratios of random
variables.

Realized values of Y will be denoted by y, i.e.,
when the random process having outcomes, Ygl’ Cees

at time, g, is performed, the realized

Y
gn®
outcomes are denoted by ygl’ v ygN'

The ascertainment of the values, y ies_, leads

gi’ g
to further sources of randomness, the nonsampling
errors.

Model A.

i=1,...,N, and & , their joint distribution, are
said to constitute Model A, if the random vector,

The random variables, Ygi’ g=1,..., t,
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Y

{a marginal
conditions

(a)

g~ (Ygl’ YgZ’ ces YgN)’ has distribution, gg

distribtuion of £ ) satisfying the

,Y ., are uncorrelated
gN

|(Q-1)] = Bg Yg-l i

NTAPSS
(b) E[Ygi

where B8 _ 1s a constant and (g-1) fixes the values
of Yaj’ a=0,1,...,9-1; j=1,2,...,N.
(c) 03 A -1
gi g g

where cg is a constant, g = 1,2,...,t.

Thus, if the model holds, then

1 - = B 1

(2.8) £y | (g-1) g Y41 g
and

2 2
(2.9) o = o~y

Y! -1 -1

gg | (g-1) g g9-1g
The simplicity of the model and the ease of
applying it, as well as the frequently useful

logic of assuming that the future is in large part
proportionate to the past, make it a very tempting
model to consider. Model A is a first step in
finding a model that is both satisfactory for
interpolation between benchmarks and yields
satisfactory estimators in current periods.

3. Bias

Let us now consider the expected values of 1link
relatives and link relative estimators.

Llet o =0, a=1,...,q.

1 1
Ya—lRa
Then, writing Y8 in place of Y4 to indicate the

benchmark, we have

(3.1) EYé = £v6 ER} ... ERé
More generally,
(3.2) EYé AL fRi . £ Rq
T ¢ £
+ I . R! oo ERLL
a=0 YaRa+1 at2 9
These results follow from
. y! = £Y' R' = FR'EY! 4+ 0
(3.3) £v5 = EY5 1Ry = ERGEYgp* Tpys
g g-1.
If condition (b} of Model A is assumed, then
eYéa T B, Va1 a0 €Yy Ba 5Ya-1’
and hence E‘Ré = E:Ra = B, -

Also, under the same assumption, it follows that

o ] 1
YaRa+1



Hence, if it is assumed that €Y6 =£Y0 =BO, then

Yé is an unbiased estimator of Yg, i.e.,

1 = = B B e B
(ng 6Yg 0o & g
However, if Y6 is biased, then Yé is biased and

EYé = CYg ( £Y5/ 8)

We note that if Yé is unbiased, a=0,1,...,t, then

it follows that Yé - Yé-l is an unbiased estimator

of the change, Yg - Yg—l’ and that Ré -1 s an
unbiased estimator of relative change,

Y -Y Y .
( g g_1)/ g-1
Whether (b) holds is an empirical question and
should be reexamined in any survey for which
benchmarks and data for all establishments are
frequently available in addition to the continuing
samples. If (b) is incorrect,e.g.,E[Ygil(1-1)] is
a polynomial in Yg_1 i then the link relative
estimator will become a biased estimator of Yg.

In this case, the balanced or over-balanced
samples suggested by Royall and Herson (1973) and
by Scott, Brewer and Ho (1978) for ratio
estimators rather than 1link relatives are not
practical for link relative estimators, since even
if balanced samples are selected at time 0, they
are most unlikely to be balanced at time g.

4. Mean Square Errors

In this section, benchmark comparisons are first
discussed in subsection a. These comparisons
provide “one degree of freedom” estimates of mean
square errors between the estimates and the
benchmarks. However, benchmarks may be available
only some time after a survey is made and are
available only at certain intervalsy and in any
case, it is desirable to have estimates of mean
square error derived from the samples themselves.

In subsection b, variance estimators are derived
based on Model A. These estimators are simple
generalizations of Royall and Eberhardt (1975).
The benchmark comparisons may be used to indicate
whether the variance estimators are biased.

a. Benchmark Comparisons. If benchmarks are
obtained at various times, e.g. at intervals of t,
then at times t, 2t, ..., estimates of the mean

square error of Y'  about Y ¢ may be obtained,
where th denotes the benchmark at time ct,
c=1,2,..7°. Then,

2 _ . 2
(4.1) 'S = (Yy - V&)
is an estimator of

2 _ .o 2
(4.2) M = E(th Ygt)

where the asterisk (*) is used to indicate that
the benchmark also may be in error.

If the benchmark is not in error, then M'2 is a
"one degree of freedom" unbiased estimator of the
MSE.

. s . . N
If th is an unbiased estimator of th and

) _ _ 2
E MY (Vg Yer) = EEY)T
then
' 2 _ . 2 _ 2

(4.3) E(YL Y20 = E(YL-Y )% E(YE-Y )
and M2 underestimates MZ, but ordinarily the
second term on the right of (4.3) will be small
compared to the first, unless Yé is badly biased.
Thus, the importance of close %greement between
the benchmark and th is emphasized.

On the other hand, if both Y*t and Y', are
unbiased, estimators of Y_, and the deviat{ons of
Yét and Yét about th are uncorrelated, then

(4.9) & ét‘Y’Et)Z AN *f(Yét‘th)z;

the upward bias would be even larger, if errors in
Y!, and Y* are negatively correlated. Again, the
sgzond te?& on the right of (4.4) should be small
compared to the first.

When benchmarks are available for strata or
subpopulations at times ct, ¢ = 1,2, ..., addi-
tional benchmark comparisons may be made.

Thus, benchmark comparisons provide estimates of
the mean squared errors, but may themselves be
unreliable, because of being "one degree of
freedom"” comparisons. They also include the
effects of nonsampling errors resulting from
differences in procedures that may be used to
obtain the estimators, Yét’ and the benchmarks,
Y*, .

ct

A major use for benchmark comparisons occurs when
the sg are de facto not probability samples. If

enough benchmark comparisons, (4.1), are made, the
averages and distributions of the comparisons
provide useful evaluative information.

Benchmark comparisons may also be used to evaluate
estimates of the mean square error based on the
samples themselves in order to determine whether
model-dependent biases are causing the mean square
errors based on the models to have large errors.
Choices may be made among alternative models,
using agreement between benchmark comparisons and
mode ] dependent estimates of mean square errors as
a basis for choice. Finally, there will be
greater confidence in inferences concerning mean
square errors for times between benchmark
comparisons, if the model dependent mean square
errors are sufficiently in agreement with the
benchmark comparison mean square errors. When, in
addition to the benchmarks, the data for the
elements of the entire population at benchmark
periods are available, the evaluation and revision
of the model based procedures can be much more
thorough.

b. Mean square error for a given sample. The sets
S1s Sos ees Si» are considered fixed. Only the




Ygi’ g=l, ..., k, ie sg are considered random.
Let us define Y6

* = Y
(4.5) Yg Yy g

and assume Model A.

Then,
(4.6) gvé

if we define

Bgp By --- B

Bo £
If we assume, as before, that
- \
E LYy [(g-1)] Bq Yg-1
then
* = yt
Eve AN
Hence, the mean square error of Yé about Ya is
2 = 2
M = g
] Y| - Y*
Yg Y97 g
(since all variances in this section are with

respect to £ , the symbol, & , will be omitted.)

Then, from Model A, it follows that

a
yr oo yx
(4.7) WW%I = ___3__2_3__
g c‘lYg
o g \ -
i Y6 . . Ya-Yg (a-1)
- ) P25
A a=1 £Y3

where 05* is the variance of the benchmark, Y§ -
0

Let Y'
aa 2
i3 Mar v e o
(4.8) uz = a — 5 s
(na_l) a-1 a (1'Va-1 a)
where Ny is the number of elements in Sa»
Yé-l a Yé-l a / Na
and I v 2
5 jie sa(Ya-l i~ Ya-l a)
(4.9) va-l a T2
(na'l) Na Ya-1 a
Also, let
02 = 2 Va1 (Va1 - Yao1 o)
a a \
a-1 a
Then
Y ( 1 - Y! )
2 2 a-1''a-1 a-1 a
£ LV [(a-1)1= o -
a-1 a
2
= 0Ya - Yg | (a-1)
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estimator of RM2

Thus, a yseful yi is given
by 2 2 g
Sy * Syx 2
(4.10) Yg = Y3 5 g u
= + -
l2 ? - 1 >
Yg Ya a=1 Ya
where s$* is assumed to be an unbiased estimator
0
of oyx + The estimator (4.10) is consistent
0
Rﬁdﬁﬁbgggggags€9$gﬂggogf' U%‘-Y* is given by
T
g u
(0.11) s§, g = T (RS2 - 52— s5,
g g a=l1 a-1 a 0
2
g g u
+ I I (R'Z- Y,—f')Ui_l
a=2 f=a f -1 f

Equation (4.10) generalizes the results obtained
for ratio estimators by Royall and Eberhardt
(1975).

Also, we note that, if it is desired to retain (b)
of Model A, but define

5 2 5 2
= v (Y .}
Ygi g g' g-1i
where V (Y_ .. ) dis not Y . but some other
functior ofg'\rlgll j» and to l?s.el bstimators such as
Yo=Y RM(Y - Y
g 99 g ( g-1 ~ 'g-1 g)
where
. JgiYg-1
igs v (Y .
RY = g g g-]. 1
v2 ’
-1
.z
ie Sg Vg Yg_1 3
then, if (b) of Model A is retained, Y'! is an

unbiased predictor of Yg , but the mear? square

error becomes intractable. Thus, if Model A is to
be used, monitoring and possibly stratification to
increase the likelihood that Model A holds within
the resulting strata are essential.

The use of model-dependent estimators of mean
squares, thus, requires frequent comparison with
check data. One major reason for this is that
sample surveys made over time are not controlled
experiments, even less controlled than are
clinical experiments. As a result , one cannot,
as in the case of industrial products, establish a
state of statistical control and then have some
certainty that the assumption reguired by the
statistical methods will continue to be
sufficiently valid. The periodic availability of
benchmark comparisons and data make it possible to
determine whether the assumptions of the given
model are resulting in gross under-estimation of
the "true" MSE's. Between benchmarks, the
assumptions made by the model can be examined for



the reporting establishments, although with Tess
confidence in the conclusions.

When a survey produces many individually
benchmarked estimates based on independent samples
from many industries, the number of such benchmark
comparisons may be large enough for confidence in
the outcomes of studies such as we have suggested.

5. James-Stein Type Estimators

One important part of the 790" survey design is
that estimators are prepared and benchmarked for
each of 846 estimating cells corresponding to
different industries or, 1in some cases, to
industries classified by geographic region and
size of establishment. Improvements in the
estimates for individual industries may be attain-
able through the wuse of James-Stein type
estimators, just as in other problems involving
several estimators.

The results of this section are general and are
not limited to link relative estimators. Also,
space permits only a minimal 1isting of results.

Let Yém be an unbiased estimator of ng, where g

identifies the time and m = 1,2,...,M for a
specified M estimator, e.g., M may be the number
of small areas or industries. It is not necessary
that M be the total number of estimates to be made.

James-Stein type estimators are obtained below,
assuming Yém and Y m are random variables.

Similar results have been obtained for realiza-
tions using a probability sample design approach
and will be discussed in another paper.

The James-Stein type estimators will be obtained
by first minimizing

M 2

5.1 z y ye -V

(5.1) m=1 gm a gm- gm 9 ( gm 9)]

for cg, where the weights wgm satisfy

M
> -

wgm 20, ? wgm =1, and

5. Y = !

(5.2) Yg b wnggm

and then rep]ac1ng the value c_ of cg thus
obtained by a ratio estimator of Eg' As in

regression, the mean square error,

of the ratio estimator,
1

assume that ng

Now, let us suppose that OY. y =0 $
gm gm gm

for link relative estimators satisfying Model A,

and define

M

2

S = I W

1 m=] 9M

taking account
is complicated. Let us
is ag -unbiased estimator of ng.

, 3 istrue

2
(l'w ) 1
gm ng ng

(5.3)
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M

2 _ Y.
7 1wgm(vgm TS
(5.4)
2 M 72
= T W (Y -V
3 p=p 9mogm g

where, for link relative estimators, the

S$. -y have been obtained in Section 4.
gm gm
Then, Esg =£5§ +fs§
Also, the estimators
(5.5) ng = ng— —zgg— (ng-Yg), m=1,2,...,M,

will have smaller total mean square errors than

the estimators, s, Yém' In fact,
2
. Yll_
(5.6) 1 gm6 gm gm
ey (£s5)?
T o_gmet gmT gm’ T 2
m=1 552

Often, it is desirable to have w =L . Some-

times the wg are chosen to nnn1m1ze E(Y'-Y ).

Then 99
K
W =
gm v 2
EMgnY gn)
where K 1. z 1 5
(VY g
Then
M-1 v
YII = 1 Yl _YI
gm gm M £ (Y' _7-)2 ( gm g)
g 9gm g
\ 2
mlE(ng gm)
and
M 2
2 _1 (M-1)
W y* -y ==t M -
mil ng( gm gm) K MY -7')2
2
m=1 (Yém-ng)
The expected reduction in total mean square errors
will be §omewhat less when the computable
est1mat0rs , Y55 , are used, where, if,
<Sl/52) £ 1, then, by definition,
)
5.7) Y = Yem Yeo- ¥,
(5.7) Yoo S - Ty
2
2
and if —%—->1 then by definition Yg =Y.
S
2



If, instead of minimizing the weighted sum of
squares (5.1), we minimize
2
X - Yo+ yro-yyl o,
(5.8) E Dy = Yom * Cqnl¥gm Vg
then 2
s R {,5 -
(5.9) gy - f—sg— .
2m
where,
2 2
S = (1 - w ) Sy
gm gm ng ng
2 A Y
(5.10) sp0n = (Ygn - Ygp)

However, Sggm is Tikely to have a Targe variance

as an estimator of £s2 and, hence, a hybrid of
Y” and Y'Y is suggesggd, namely,

= Y!

v
(5.11) ng gm

if 0 <f <1, where
52 §2
_ _gm 2gm
(5.12) f = ;%——-[2(1 W) - g?ﬂ“]-
2 2

V _y. . >
=Y n® and if f 21,

< Cition Y
If f =0, then by definition gn g

A vV _ . .
then by definition, ng = ng. The criterion, f,
has been chosen by reguiring that
(5.13) FLY._-Y! +-£sgm (v -Y")]2 £ F(Y_-y )2
) E[ gm gm 553 gm g gm ~gm
. 2 2 2 2 2
and replacing fsgm,ﬁsz and 552gm by Sqm* 52 and

2 .
Sng in the result.

We now show how to obtain approximate confidence
intervals for ng. Suppose that the variables

have been defined so t?at for -large enough sampies
and subpopulations, ng converges in probability

(yp =¥ )
gm gm . -

to O, sgm———gz—g—— converges in prabability to O,

2
and

Yt o~y
(5.14) gm___om

ng

is approximately normally distributed. Then,

v

ignoring the censoring in the definition of ng,

it follows that

Yooy
7 = _gm gm

. f)E

Sqm (1 - f)
is the sum of a random variable having normal
Timiting distribution (with O mean and variance,
[1 - f] and a random variable converging in

(5.15)
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probability to 0; hence, Z s approximately
normally distributed for 1large samples (0,1).
Thus, an approximate confidence interval for ng

may then be obtained from (5.15). Also, it is
noted that under the assumptions made above, Y' is
consistent, if Y'm is consistent. Similar results

may be obtained for Y’; by making the same kinds of
assumptions. 9

Such procedures are also available for probability
sampling designs. It will be noted that, as the
size of sample within a subpopulation or the
sample proportion of the measured variable
increases, e.g., employment for the subpopulation,
increases, the benefits of the J-S estimators will

decrease. This is expected, since we are
attempting to estimate ng, and the "within"
sample 1is close to the population value, under
these conditions. The samller the "within"

variance of an unbiased estimator, the smaller the
benefit to be gained from additional information
such as the values of other estimators.

James-Stein estimators can also be stated for
estimating change, either applying the approach to
link relatives Rém’ m = 1,2,...,M, or to the

gn " Yg-l m Both methods, however,
have possible instabilities arising from small

differences, Y

values of the terms corresponding to sg above.

The use of either Yoo - Yoy ooV v’

gm g-Tm,
where the estimates are independently calculated,
may lead to changes of direction that are con-
trary to the evidence provided by the link rela-
tives. To obtain James-Stein estimators that
preserve direction may require the use of mathe-

matical programming methods.
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