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1. Introduct ion changes over time. Various industr ies and 

The type of estimator that forms the background 
for  th is  paper on l ink re la t i ve  estimators is one 
which uses a benchmark obtained per iod ica l l y  
togei~her with a survey estimate of change for  time 
periods between benchmarks. 

A benchmark is an essent ia l l y  complete to ta l  for  a 
population and may be obtained from administ rat ive 
records, or censuses, or surveys large enough to 
be considered sample censuses. The information 
from which benchmarks are obtained may also 
provide the ent i re  or a major part of the basic 
frame or l i s t  for the current ( intervening) 
surveys. 

By a l ink re la t i ve  we mean the ra t io  of a to ta l  for  
a given period to the to ta l  for the same var iable 
in the preceding period for units report ing in 
both periods. The l ink re la t i ve  determines 
re la t i ve  change from one time period to the next. 
The l ink re la t i ve  estimator of a to ta l  is the 
product of a benchmark and the l ink re la t i ves  for  
the periods of time between the benchmark and the 
current period. 

The Bureau of Labor S ta t i s t i cs  Current Employment 
S ta t i s t i cs  Program uses, essent ia l l y ,  a l ink  
re la t i ve  estimator. This program provides monthly 
estimates of employment, hours and earnings of 
workers on nonagr icul tural  establishment 
payro l ls .  Benchmark employment is obtained every 
year or so from Unemployment Insurance 
administrat ive records. Monthly estimates of 
change between benchmarks are obtained from a 
large voluntary monthly mail survey, known as the 
790 Survey because of i ts  schedule number. The 
790 Survey data are obtained from cooperating 
establishments on a voluntary mail "shut t le"  
schedule. Descriptions of the Current Employment 
Sta t is t i cs l /Program and the 790 Survey are 
avai lable - . 

From the de f in i t i on  of l ink re la t i ve  estimators, 
i t  fol lows that l ink re la t i ve  estimators may y ie ld  
biased estimators of change. Establishments 
change over time. They  may go in and out of 
business. They may change through mergers, 
sp l i t s ,  purchases and sales (sometimes enough to 
change the i r  industry c l ass i f i ca t i on ) .  Unless the 
resu l t ing  biases are cumulat ively very small, i t  
is desirable to use a supplementary sample or an 
adjustment procedure or both. The 790 Survey 
cur rent ly  depends pr imar i l y  on an adjustment 
procedure with some updating largely at benchmark 
times. These topics are not fu r ther  discussed in 
th is  paper. Rather, th is  paper is l imi ted to the 
discussion of l ink re la t i ve  estimators from the 
point of view of a simple s t a t i s t i c a l  model. 

Although the present paper is l imi ted to s ta t i s -  
t i c a l  models, we emphasize that the user of a 
model must and does recognize that any model is 
un l i ke ly  to be correct.  Even i f  i n i t i a l l y  
correct ,  a model may become incorrect because of 

establishments of various sizes within an industry 
may be d i f f e r e n t i a l l y  affected by changes in the 
economy, perhaps because d i f fe ren t  regulat ions 
apply, perhaps because changes in technology 
af fect  some establishments early.  For these and 
other reasons, models possibly applicable in one 
industry or one time period may not be applicable 
in another. A properly maintained p robab i l i t y  
sample design may have a larger or smaller mean 
square error (MSE) over time but w i l l  not become 
inconsistent because of such changes. However, 
p robab i l i t y  sample designs also have problems. I t  
is cost ly  and not always possible to maintain 
p robab i l i t y  samples of establishments, both 
because estab I i shments change and because 
cumulative nonpart ic ipat ion may occur over time. 
The ef fects of nonpart ic ipat ion cannot be reduced 
in cer ta in ty  strata or in strata with large 
sampling ra t ios .  Rotation methods, for  example, 
obviously cannot help in cer ta in ty  st rata.  

I f  a large enough proport ion of the benchmark 
to ta l  is in the sample, e .g. ,  a high proport ion of 
the large establishments report ,  and i f  the error 
in the model is not large for  the remainder, then a 
model dependent design (when care fu l l y  monitored 
for  changes) may provide good estimates of 
population charac ter is t i cs ,  and of the associated 
mean square errors.  

Our point of view also applies to the treatment of 
nonresponse or missing data. In general, 
establishments that do not respond should not be 
assumed to be a random sample from the p robab i l i t y  
sample. One may then ask, "Can a s t a t i s t i c a l  
model be formulated such that ,  for  that model, the 
incomplete data are close enough to 'missing at 
random', for  useful estimators and evaluations to 
be obtained? Such procedures can be studied and 
evaluated for surveys for which data for  
nonrespondents and benchmarks become avai lable,  
from time to time, as in the "790" survey. 

The methods used c lear ly  generalize to the u t i l i -  
zation of data for  report ing units for  which data 
are avai lable at non-consecutive periods. These 
estimators w i l l  be discussed in a fu r ther  paper. 

2. Def in i t ions and expected values. Model A. 

The elements2~establishments ) of the population 
are denoted _ 1 , b y  I ,  2 . . . .  N, and Ygi is the 

random variable in which we are interested for 
element (establishment) i at time g. The pop- 
u lat ion to ta l  for time g w i l l  be denoted by Y 
where g' 

N 
= z yg (2.1) Yg i=1 i ' g = 0,1 . . . . .  t 

and i t  is desired to estimate Y or functions of g 
YO' YI . . . .  ' Yt" (Since Yg is a random var iable,  

i t  might be preferable to speak of predictors 
rather than estimators; no confusion should resul t  
from our terminology.) 
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We suppose that at time O, a benchmark, Y~ , is 

avai lab le,  i .e .  Y~ is "close" to YO' the to ta l  of 

YOI . . . . .  YON " The set of elements repor t ing at 

t ime, g, for  which the Ygi needed for  est imation 

are ava')lable both for  times g and g-I  is denoted by 
s , g = l  2 t g , , . 0 • ,  • 

Define 

(2.2) V' = Y Y . 
gg i~  Sg gl 

and 

(2.3) ' - s Y Yg-1 g i ~s g-I  i 
g 

Thus, Y'gg and Y~-~ 1 g are sums of the values of Y 

for  the same establishments in periods, g-I  and g. 

For some elements of the sample, data may be 
avai lable at one but not both t imes; such elements 
are excluded from the estimator in the present 
sect ion, but should resu l t  in an improved 
est imator,  depending on the cost, time and 
methodo logy used. 

The sample l ink r e l a t i ve ,  R" , is defined by the 
equation, 

y, 
(2.4) R ' = 9g 

g Y' • g-1 g 

I t  is noted that 

(2.5) Yg = YoRIR2 . . .  Rg , 

where Ya 
- , a = l  . . . . .  g . (2.6) R a Ya-1 

Because of the reasons discussed in the preceding 
sect ion, i .e .  the populat ion 's change over t ime, 
R a w i l l  usual ly  be a biased est imator of R_ and • d '  ' 

hence, special samples or adjustment factors w i l l ,  
in pract ise,  be needed to avoid or reduce the 
possibly large and cumulative biases• Generally, 
the benchmark, Y~ , w i l l  be a good estimate of YO" 

We define 
' ' = Y '  R'  (2.7) Yg = Y~R~ . . .  Rg g-Z g 

to be the l ink re la t i ve  est imator of Yg, g=l, 2, 

. . . ,  t .  Thus, the l ink re la t i ve  estimator is the 
product of the benchmark and ra t ios  of random 
var iables• 

Realized values of Y w i l l  be denoted by y, i . e . ,  
when the random process having outcomes, Y gl . . . .  ' 
YgN' at t ime, g, is performed, the real ized 

outcomes are denoted by Ygl . . . . .  YgN" 

The ascertainment of the values, Ygi '  i ~ Sg, leads 

to fu r ther  sources of randomness, the nonsampling 
errors .  

Model A. The random var iables,  Ygi'  g=l . . . .  , t ,  

i = l , . . . , N ,  and ~ , t h e i r  j o i n t  d i s t r i b u t i o n ,  are 
said to cons t i tu te  Model A, i f  the random vector,  

= (Yg  Yg Yg I '  2 . . . . .  YgN ) '  g has d i s t r i b u t i o n ,  

(a marginal d i s t r i b t u i on  of ~ )  sa t i s fy ing  the 
condit ions 

(a) Ygl'Yg2 . . . .  'YgN are uncorrelated 

(b) ~ [Yg i  l (g -Z) ]  = Bg Yg-z i 

where B is a constant and (g - l )  f ixes the values g 
of Yaj '  a=O,l . . . . .  g - I ;  j = I , 2 , . . . , N .  

2 2 
(c) Oy . = Og Yg-1 i gl 

where ~2 is a constant, g - 1,2 . . . . .  t .  g 

Thus, i f  the model holds, then 
l l (2.8) CYgg I (g-Z) = Bg Yg-1 g 

and 
(2 9) o2 = o2 y, 

i ° • Vgg I ( g - Z )  g g - Z  g 

The s i m p l i c i t y  of the model and the ease of 
applying i t ,  as well as the f requent ly  useful 
logic of assuming that the future is in large part 
proport ionate to the past, make i t  a very tempting 
model to consider. Model A is a f i r s t  step in 
f ind ing a model that is both sa t i s fac to ry  for  
in te rpo la t ion  between benchmarks and y ie lds 
sa t i s fac to ry  estimators in current periods. 

3. Bias 

Let us now consider the expected values of l ink 
re la t i ves  and l ink re la t i ve  estimators• 

Let Oy, 1R a = O, a=l . . . . .  g. 
a- 

Then, wr i t i ng  Y~ in place of Y~to indicate the 

benchmark, we have 
l . ' = E Y ~  E R ~  . .  £ R g  (3 1) E Yg . . 

More genera I ly ,  

(3.2) ~Y~ = ~Y~ ER~ . . .  ~rR~ 

g-I  
+ ~ o 

a:O Y'R' LrR' " a a+l a+2 " ' "  Rg 

These resul ts  fo l low from 

(3 3) CY' : ~Y' R' : #R'  ~Y~_z + °  , , • g g-Z g g RgYg_z. 

I f  condit ion (b) of Model A is assumed, then 

l _-- ~Y' = B ~Ya-z a' crYa Ba CYa-z aa a 
l : _. and hence ~'R a ~R a Ba • 

Also, under the same assumption, i t  fo l lows that 

0 - -  O - 0 

Ya R' Y' R' a+l a-I  a a 
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Hence, i f  i t  is assumed that ~'Y~ =coY 0 =B O, then 

' is an unbiased estimator of Yg, i . e . ,  Yg 

~ g  = BO BI y, = ~Yg . . .  g • 

However, i f  Y~ is biased, then YG is biased and 

Yg' = £Yg ( f~Y~ /BO)  

' is unbiased, a=0,1, t then We note that i f  Ya " ' "  ' 

i t  fol lows that Y~ - Y~-I is an unbiased estimator 

of the change, Y g - Yg- l '  and that R'g - I is an 

unbiased estimator of re la t i ve  change, 

(Vg - Yg-l)/Vg-z " 

Whether (b) holds is an empirical question and 
should be reexamined in any survey for which 
benchmarks and data for a l l  establishments are 
f requent ly  avai lable in addit ion to the continuing 
samples. I f  (b) is i n c o r r e c t , e . g . , ~ [ Y g i l ( i - 1 ) ]  is 

a polynomial in Yg-1 i '  then the l ink re la t i ve  

estimator w i l l  become a biased estimator of Yg. 

In th is  case, the balanced or over-balanced 
samples suggested by Royall and Herson (1973) and 
by Scott, Brewer and Ho (1978) for ra t io  
estimators rather than l ink re la t ives are not 
pract ica l  for  l ink re la t i ve  estimators, since even 
i f  balanced samples are selected at time O, they 
are most un l ike ly  to be balanced at time g. 

4. Mean Square Errors 

In th is  section, benchmark comparisons are f i r s t  
discussed in subsection a. These comparisons 
provide "one degree of freedom" estimates of mean 
square errors between the estimates and the 
benchmarks. However, benchmarks may be avai lable 
only some time af ter  a survey is made and are 
avai lable only at certain in terva ls ;  and in any 
case, i t  is desirable to have estimates of mean 
square error derived from the samples themselves. 

In subsection b, variance estimators are derived 
based on Model A. These estimators are simple 
general izations of Royall and Eberhardt (1975). 
The benchmark comparisons may be used to indicate 
whether the variance estimators are biased. 

a. Benchmark Comparisons. I f  benchmarks are 
obtained at various times, e.g. at intervals of t ,  
then at times t ,  2t, . . . .  estimates of the mean 
square error of Yct about Yct may be obtained, 
where Yct denotes the benchmark at time ct ,  
c=1,2, . . . .  Then, 

I (4.1) M ,2 = (Vct - V~t )2 

is an estimator of 

(4 2) M 2 = C(Y' - Y* )2 
" ct ct 

where the asterisk (*) is used to indicate that 
the benchmark also may be in error .  

I f  the benchmark is not in error ,  then M'2 is a 
"one degree of freedom" unbiased estimator of the 
MSE. 

I f  Yct is an unbiased estimator of Y~t and 

(Yct_ Y )(y~t_ Y ) = ~-(y~t_y )2 then ct ct ct ' 

(4 3) ~ ( Y ' . - Y *  )2 = ~(V, _V )2_ E(Y* -Vc  )2 
• c z  ct ct ct ct t 

and H '2 underestimates M 2, but o rd ina r i l y  the 
second term on the r ight  of (4.3) w i l l  be small 
compared to the f i r s t ,  unless Y~t is badly biased. 
Thus, the importance of close ~greement between 
the benchmark and Yct is emphasized• 

On the other hand, i f  both Y*t and t Y' are 
unbiased, estimators of Y-t and t~e devia ~otns of 
Y~t and Yct about Yct areCunc°rrelated' then 

(4.4) ~ ( Yct_Y~ t ) 2 =E(Yct-Yct) 2 4- ~'(Y~t-Yct )2; 

the upward bias would be even larger,  i f  errors in 
Y'. and Y* are negatively correlated. Again, the 
s~ond t e ~  on the r igh t  of (4.4) should be small 
compared to the f i r s t .  

When benchmarks are avai lable for strata or 
subpopulations at times ct ,  c = 1,2, . . . ,  addi- 
t iona l  benchmark comparisons may be made. 

Thus, benchmark comparisons provide estimates of 
the mean squared errors, but may themselves be 
unre l iab le,  because of being "one degree of 
freedom" comparisons. They also include the 
ef fects of nonsampling errors resu l t ing from 
differences in procedures that may be used to 

' and the benchmarks, obtain the estimators, Yct' 
y ,  

ct " 

A major use for benchmark comparisons occurs when 
the Sg are de facto not p robab i l i t y  samples. I f  

enough benchmark comparisons, (4.1) ,  are made, the 
averages and d is t r ibu t ions  of the comparisons 
provide useful evaluative information. 

Benchmark comparisons may also be used to evaluate 
estimates of the mean square error based on the 
samples themselves in order to determine whether 
model-dependent biases are causing the mean square 
errors based on the models to have large errors. 
Choices may be made among a l ternat ive mode Is, 
using agreement between benchmark comparisons and 
model dependent estimates of mean square errors as 
a basis for choice. F ina l ly ,  there w i l l  be 
greater confidence in inferences concerning mean 
square errors for  times between benchmark 
comparisons, i f  the model dependent mean square 
errors are s u f f i c i e n t l y  in agreement with the 
benchmark comparison mean square errors.  When, in 
addit ion to the benchmarks, the data for the 
elements of the ent i re population at benchmark 
periods are avai lable,  the evaluation and revision 
of the model based procedures can be much more 
thorough. 

b. Mean square error for  a 9iven sample. The sets 
s I ,  s 2 . . . . .  s k, are considered f ixed• Only the 
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Ygi'  g=l, . . . ,  k, i ~ Sg 

Let us define y~ 

(4 5) Y* - Vg 
" g YO 

and assume Model A. 

are considered random. 

Then, 
! - -  

(4.6) ~Yg BO 61 "'" Bg , 
i f  we define 

B o = S Y8 • 

If we assume, as before, that 

[Yg i ( g - l ) ]  : B g Yg- I '  

then 

~Y~ = ~Y; • 

' about Y~ is Hence, the mean square error  of Y g 
, J  

2 = o2 Y* 
I _ My~ ~ yg g 

(since a l l  variances in th is  sect ion are with 
respect to ~ , the symbol, ~ , w i l l  be omi t ted. )  

Then, from Model A, i t  fo l lows that  
o2 

y ,  _ 
( 4 . 7 )  RH 2 = 9 Yg 

Y' 2 
g ~Y~ 

where 

Let 

2 
~y~ g , a-Y~ (a-Z) 

= ~y-2~ + I~ a=1 E y.2 
a 

2 is the var iance of the benchmark, Y~ • ~v~ 
V l  

aa Ya-1 i )2 I r. (Yai- Ya-1 a 
i c s  a 

(na-1) Ya-I a (1-V -1 a ) 

2 
(4.8) u a - 

where n a is the number of elements in s a, 

¥, = y ,  / n a 
a-I  a a-I  a 

and S (y - ,  
i ~s a a-I  i - Ya-I a 

2 
(4.9) Va-I a - t)'na-l' 9,2 n a a-Z a 
Also, le t  

l I I 

2 2 Ya-1 (Ya-1 - Ya-1 a ) 
U a : u a 

y, 
a- I  a 

)2 

Then I l I 

~ [ U  2 2 Ya-z(Ya-z - Va-I a 
a I ( a-Z)] = ~ y, 

a a-I  a 
2 

= ~V'a - Ya* i (a - l )  . 

Thus a useful est imator of P, H2 is given , y ,  
by g 

y .  
(4.10) g g g U 2 

= + 7 a 
,2 y,2 ,~ ' 

Yg v a=l Y a 

where s~_ is assumed to be an unbiased est imator 

2 
of Oy, . The est imator (4.10) is consistent  

u 

~nd~baeneral  cond i t ion#.  rased est imator ~ ,_y, is given by 
g g 

2 
g ,2 Ua 2 

(4.11) s ,_y, = II (R a - - - T - - ~ - )  S 
g g a=l Ya-I a Y~ 

2 
g g 2 u 2 + 7 II (R' - f )Ua_ I I " 

a=2 f=a f Y f-1 f 

Equation (4.10) general izes the resu l ts  obtained 
for  ra t i o  est imators by Royall and Eberhardt 
(1975). 

Also, we note tha t ,  i f  i t  is desired to re ta in  (b) 
of  Model A, but define 

2 2 
o = ~ V(Yg ) 

Y . g g - I  i gl 

where V (Y ) is not Y . but some other 
funct i°ng °fg-yl-ilg- i '  and to uqs-~ ~st imators such as 

where 

Y' = Y + R" (Y' - Y ) g gg g g-I  g-1 g 

Y 
iZ s9 9i Yg-1 i 

Vg(Vg_ 1 i ) 
R l l  : 

g 2 
.~. Yg-I i 
i ~ Sg Vg(Yg_l i ) 

then elf (b) of Model A is re ta ined,  Y' is an 
u n b i a s _  pred ic tor  of Yg , but the mean g square 

er ror  becomes in t rac tab le .  Thus, i f  Model A is to 
be used, monitor ing and possib ly  s t r a t i f i c a t i o n  to 
increase the l i ke l ihood  that Model A holds wi th in  
the resu l t i ng  s t ra ta  are essent ia l .  

The use of model-dependent est imators of mean 
squares, thus, requires frequent comparison with 
check data. One major reason for  th is  is that 
sample surveys made over time are not con t ro l led  
experiments, even less contro I led than are 
c l i n i c a l  experiments. As a resu l t  , one cannot, 
as in the case of i ndus t r i a l  products, estab l ish a 
state of s t a t i s t i c a l  contro l  and then have some 
ce r t a i n t y  that the assumption required by the 
s t a t i s t i c a l  methods wi I I  continue to be 
s u f f i c i e n t l y  va l id .  The per iod ic  a v a i l a b i l i t y  of 
benchmark comparisons and data make i t  possible to 
determine whether the assumptions of the given 
model are resu l t i ng  in gross under-est imat ion of 
the " t rue"  MSE's. Between benchmarks, the 
assumptions made by the model can be examined for  
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the repor t ing establ ishments, although with less 
confidence in the conclusions. 

When a survey produces m a n y  i n d i v i d u a l l y  
benchmarked estimates based on independent samples 
from many indus t r ies ,  the number of such benchmark 
comparisons may be large enough for  confidence in 
the outcomes of studies such as we have suggested. 

5. James-Stein Type Estimators 

One important part of the "790" survey design is 
that  est imators are prepared and benchmarked for  
each of 846 est imat ing ce l ls  corresponding to 
d i f f e r e n t  indust r ies  or, in some cases, to 
indust r ies  c l ass i f i ed  by geographic region and 
size of establ ishment. Improvements in the 
estimates for  ind iv idua l  indust r ies  may be a t ta in -  
able through the use of James-Stein type 
est imators,  jus t  as in other problems invo lv ing 
several est imators• 

The resu l ts  of th is  section are general and are 
not l imi ted to l ink re l a t i ve  est imators• Also, 
space permits only a minimal l i s t i n g  of resu l ts .  

Let Yqm~ be an unbiased est imator of Ygm' where g 

i d e n t i f i e s  the time and m = 1,2 . . . . .  M for  a 
spec i f ied M est imator,  e .g . ,  M may be the number 
of small areas or indust r ies .  I t  is not necessary 
that  M be the to ta l  number of estimates to be made. 

James-Stein type est imators are obtained below, 
assuming Y' and Y are random var iables•  gm gm 
Simi lar  resu l ts  have been obtained for  r ea l i za -  
t ions using a p r o b a b i l i t y  sample design approach 
and w i l l  be discussed in another paper. 

The James-Stein type est imators w i l l  be obtained 
by f i r s t  minimizing 

M 2 
Y'gm-C ' y, (5.1) 7 W ~FFYg m- (Y - ) ]  

m=l gm g gm g 

for  Cg, where the weights Wg m s a t i s f y  

M 
W -> O, 7' W = I ,  and 

gm m=l gm 

(5 2) ¥'  : 7. W Y' 
• g m gm gm 

and then replacing the value Cg of^ Cg thus 

obtained by a ra t io  est imator of Cg. As in 

regression,  the mean square er ror ,  taking account 
of the ra t io  est imator,  is complicated. Let us 
assume that Y' is a~-unbiased est imator of Ygm" gm 
Now, le t  us suppose that ~y, y =o 2 , as is true 

gm gm Ygm 
for  l ink re l a t i ve  est imators sa t i s f y ing  Model A, 
and define 

( 5 3 )  s 2 M 2 
• = 7. W (1-W ) SY.m_Yg m g  i m=l gm gm 

(5.4) 

M 

s~ m= Wgm Ygm g = T 1 ( , _ ¥ , ) 2  

M 
: T W ( _¥g)2 

s~ m=l gm Ygm 

where, for  l ink r e l a t i ve  est imators,  the 

2 
y, - y  

gm gm 
have been obtained in Section 4. 

Then ~s~  =~s~ +~s  2 
' 3 " 

Also, the est imators 
2 

s 1 
II - -  l (5 5) Ygm Ygm- ~ (Y' - - ' )  m=l 2 . . .  M • g m Y g ,  , , , , 

w i l l  have smaller to ta l  mean square errors than 
the est imators,  s, Y'm'~ In fac t ,  

M 
I I  (5.6) 7' Wgm~ (Ygm_Ygm) 2 

m=l 

M : 7. , y ) 2 .  (~s~)2 

m=iWgm ~(Ygm- gm ~ s~ 

Often, i t  is desirable to have Wg m - 

times the Wg m are chosen to minimize ~(Y'-Y-~). 
Then Y 

1 • Some- M 

K 
W = 

gm 6(Y '  -Y )2 
gm gm 

-1 1 where K = 7' )2 m ~(V '  -V gm gm 

Then 
M-I y,, = y, _ 

gm gm M ~ (Y' y , ) 2  
~, gm- g,- 

m=l ~ (Y' -Y gm gm 
and 

M 
~ Wg mC( Y" )2 = 

m=l gm -Y gm 

! - - 1 )  Ygm-Yg 

)2 

M - (M-1)2 
M (y, ¥, )2 
7' n ~m- g 

m=l (V, _y )2 
gm gm 

The expected reduct ion in to ta l  mean square errors 
w i l l  be Rs/omewhat less when the computable 

,~i 11 ! est imators- ,~ o Ygm ' are used, where, i f ,  

(s~/s~) <- 1, then, by d e f i n i t i o n ,  

2 
Sl _ ¥, 

(5 7) Y'" : Y' - (Ygm ) • gm gm ~ g ' 

;m - and i f  >1 then by d e f i n i t i o n  Y = Y' , g •  

s 2 
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I f ,  instead of minimizing the weighted sum of 
squares (5.1) ,  we minimize 

2 
I (5 8)~[Ygm - Ygm + Cgm(Y' -Y ' ) ]  " gm g ' 

then, 2 
(5.9) c - ~Sgm 

2 ' 
gm ~S2m 

where, 
2 2 Wg m) , _ Sg m = (1 - Sygm Ygm 

= ' - 7 "  )2 (5.10) gm (Ygm gm • S 

However, S~g m is l i k e l y  to have a large variance 

as an estimator of Es 2 
Y" and y1V is sugges{~d and' 

hence, a hybrid o f  

' , name ly,  

s 2 
V = , ~ - -  

(5 11) Ygm Ygm- ~ (Y' - Y') 
• gm g ' 

s 2 

i f  0 < f < i ,  where 
2 2 

S S 

(5.12) f : ~ [ 2 ( 1  -Wg m) - ~gm ] .  
s 2 s 2 

I f  f <- o, then by de f i n i t i on  Y~m=Y~m , and i f  f -> 1, 

then by de f i n i t i on  yV = 7' The c r i t e r i on  f ,  
' gm gm" 

has been chosen by requir ing that 

• , + ~ S g m  2 
(5 13)~[Ygm-Ygm ~ (Y'gm-Yg-')] ~-cP(Ygm-Y'gm)2 

and replacing ES 2 ~ ~ ~ gm' ~s  and ~s gm by s 2gm,s and 

z in the resu l t .  S 
L gm 

We now show how to obtain approximate confidence 
in tervals  for Ygm. Suppose that the variables 

have been defined so t~at fo r - la rge enough samples 
and subpopulations, Sg m converges in p robab i l i t y  

y l  m l  
( gm -Ygm ) 

to O, Sg m 2 - converges in p robab i l i t y  to O, 
s 2 

and 
I 

( 5.14 ) Y gm Y gm 

S gm 

is approximately normally d is t r ibu ted .  Then, 

ignoring the censoring in the de f i n i t i on  of yV 
i t  fol lows that gm' 

yV _ y 
(5.15) Z = gm 9m 

Sg m (I - f)½ 

is the sum of a random var iable having normal 
l im i t i ng  d i s t r i bu t i on  (with 0 mean and variance, 
[ I  - f ]  and a random var iable converging in 

p r o b a b i l i t y  to O, hence, Z is approximately 
normally d is t r ibu ted for large samples (0,1).  
Thus, an approximate confidence in terval  for Ygm 

may then be obtained from (5.15). Also, i t ,  is 
noted that under the assumptions made above, yv is 
consistent i f  Y' is consistent Simi lar resul ts  

' gm 

may be obtained for  Y'" by making the same kinds of 
assumptions, gm 

Such procedures are also avai lable for p robab i l i t y  
sampling designs. I t  w i l l  be noted that ,  as the 
size of sample wi th in a subpopulation or the 
sample proport ion of the measured var iable 
increases, e.g. ,  employment for the subpopulation, 
increases, the benefi ts of the J-S estimators w i l l  
decrease. This is expected, since we are 
attempting to estimate Ygm' and the "wi th in"  

sample is close to the population value, under 
these condit ions. The samller the "wi th in"  
variance of an unbiased est imator, the smaller the 
benef i t  to be gained from addi t ional  information 
such as the values of other estimators. 

James-Stein estimators can also be stated for 
est imating change, e i ther  applying the approach to 
l ink re la t ives R~m, m = 1,2 . . . . .  M, or to the 

,J 

di f ferences,  Y~m~ - Y'g-lm" Both methods, however, 

have possible i n s t a b i l i t i e s  ar is ing from small 

terms corresponding to s~ above. values of the 

The use of e i ther  Y m - Y 1 m or yV _ yV 
gm g-I m , 

where the estimates are independently calculated,  
may lead to changes of d i rec t ion  that are con- 
t ra ry  to the evidence provided by the l i nk  re la -  
t ives.  To obtain James-Stein estimators that 
preserve d i rec t ion  may require the use of mathe- 
matical programming methods. 
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