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i. Introduction 

Ratio- and regression-type sample estimators 
have often been used instead of the "unbiased" 
sample mean y to estimate the population mean Y. 
Both types of estimators make use of a concomitant 
variable x having known mean X. The simplest 

ratio-type estimator is given by YC' and the sim- 
plest regression-type estimator by YG" The 
formulas for these estimates are given below: 

-- 

YC = rcX' where r C = y/x 

yG = rGX, where rG =IX~ -I ~y-~(x-X)> 

Here x is the sample mean for the variable x, and 

~= s ~/. 2~a the sample regression coefficient 
X ' 

Note a vague, "global" form of a priori 
knowledge is used--the existence of a moderate or 
high correlation between x and y over the entire 

-- 

population. In such a case YC and YC will have 
lower mean square errors (MSE7 than ~, and so 

almost all statisticians will choose YC or YG' 
even if biased in place of y. 

The estimators r C and r G are biased (with re- 
spect to simple random sampling (SRS)i unless 
certain conditions on E(ylx ) are met. As a re- 
sult, a number of statisticians have proposed 
alternatives to ro which are designed to reduce 
the bias over SRS. perhaps to zero. Studies usu- 

ally, but not always, Monte Carlo) have been 
performed in which the alternatives have been com- 
pared with r_ and each other with respect to MSE 

- on 'real populations and over a superpopu~tion 
model, In the latter situation the usual model 
is the following: -~ 

E(ylx) = ~ + ~x 
Var(ylx) = q)(x), a known function (up (i) 

to scalar factor) 

Two of the better papers in this area are [3] and 
[7]. Most tests under (i) have been performed 
with q~(x) = 6x t where 0 < t < 2 and 6 > 0 2 

It turns out that the shape of the population-- 
the distribution of x and the parameters 0~ X, and 
q~(x)(but not B)--affects the performance of the 
estimators. This suggests that these parameters 
be used, or approximated, in the creation of an 
estimator which is in a class containing rc, r 
and the proposed alternatives and has smaller ~SE 
than any of them. This a priori knowledge is more 
"local" than that of the assumed high correlation. 
Obtaining such knowledge may involve much work, 
but if the knowledge is reasonably accurate, great 
gains in precision of estimation will result. Hcw- 
ever, a poor choice of ~), or a nonlinear function 
E(ylx) may result in an estimator less efficient 

than r C or r G. See []]], pp. 45-48. 

2. Conditional a priori Mea n Square Error 
(C.a.p. MSE) for Linear Estimators 

Let the symbol < denote "a priori knowledge." 
In our situation, < consits of the model (i) - 
not so much the actual parameters but the general 
shape of the functions E(y]x) and Var(y]x). 

We assume a universe U of size N. Let u be a 
sample indicator function--an N x 1 vector of 

integers, u k representing the number of times uni- 
verse element k (i < k < N) appears in the sample. 
Let p(uID) be the pr--obability that u could be 

selected via a design D. Let us for simplicity 
assume u. = 0 or i. We then define, for a function 
f define~ on samples u. 

MSE(fI<;D) = Y p(uTD)MSE(fI<;u) (2) 

where MSE(fI<;u)--yet to be defined-- is that con- 
tribution to MSE(fI<;D ) associated with sample u. 
We refer to MSE(fI<;u ) as the conditional a priori 
mean square error of~f, given < and u, and denote 
it by C.a.p. MSE. We will also use The initials 
"C.a.p." for other conditional _a priori functions 
such as means and variances. 

We now restrict our interest to linear estimators 
r of the ratio R = Y/X. Our a priori knowledge 
< consists of the a priori mean m of the (Nxl) 
vector y and the (NxN) a priori covariance matrix 
V. Th~ universe mean ? then has an a priori mean 

= N F M k and an a priori variance N-'i VI. The 
ratio R aIso has an ~ r i  mean, R =~~/~. Note 

= N-l(l'm). -- -- o 

I The linear estimator r is defined by the vector 
a = a(u) : 

r= a' . y (3) 
where ak is~a function of u ?nly, not of y, such 

that a k = 0 whenever u k = 0. ~ 

Then the conditional a priori mean and variance 
or r, given < and u, are--given by 

E(rI<;u) = a'm ~ (4) 

Var(rl<;u) = a'Va J ~ 

Be now define C.a.p. MSE(rIK;u) with respect to 
~ 

the a priori ratio R : 
O 

C.a.p. MSE(rI<;u) = E[(r-Ro)21<;u ] (5) 

Be can decompose (5) into the _a priori variance 
~f r and the squared difference between the a 
)riori mean of the sample estimate and the a 
priori ratio R : 
- O 

E[ (r-Ro) 21<;u ] 

= E[(a'y - a'm+ a'm - R )21K;u] (6) 
. . . . . .  O 

= a'Va + (a'm- R )2 
. . . .  O 

When averaged over the design D, the two compo- 
nents of (6) are within-sample C.a.p. variance and 
between-sample C.a.p. MSE, given <. The first term 
contains only V, and the second, only m (and 
R = M/X). By a "consistent" estimator ~ (not previ- 
o°sly defined) we mean, for finite N, an estimator 

a'y such that a'm = Ro when n=N(u~ = IN).~ Clearly 

this is important for a meaningful set of estima- 
tors. However in (6) the first term goes to an a 
priori within-census variance which will not be 
zero, in general. We can think of < as a super- 
population structure, and Var(rl<;l N)~ as the 
variance due to that structure. 

From (2) it is clear that we can minimize 
MSE(rI<;D) by minimizing MSE(rI<;u) for any fixed 
u. Hence, we reduce the problem from N to n dimen- 
tions, n being the number of distinct units in the 
sample u. Hence, from here on, m and V are assumed 

~ 

to be related to the n-dimensional subset of non- 
zero elements of the Nxl vector u. The sample size 
n may be variable over D, but thls need not con- 
concern us. However u has been determined, we do 
the best we can with it. It is the only sample 
available. 
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3. Reflexive, Parareflexive, and Hyperreflexive 
Estimators 

We now assume that a is a function only of 
and not of any other properties of u, as in the 
following examples : 

Let r U denote y/X, the estimate of R derived from 
the unbiased sample mean y, and let aUk , aCk , and 
aGk denote the k th element of the vectors ~U, @C, 
and @G as given for estimators ru, rc, and rG, 
respectively. If the sample size is n, we have 

aUk = i/(nX) , aCk = i/(n~) 

l (X-~) (x k 

and aGe = -~ + (n'l) Sx >~ j 

where Sx 2 = (n-l)-IZ(Xk-X)2. 

(7 a, b, c) 

We are not interested in the set of all linear 
estimators; we are, however, interested in certain 
subsets. Consider expressions (3) and (7). For 
r U and r G we have, for all x: 

~' ~ = 1ff (8) 

whereas for r C and the proposed ratio-type alter- 
natives in the literature along with r G = YG/X, 
we have the following: 

a' x= i (9) 

for all x. y does not satisfy (9), nor does r C 
satisfy (8). 

We call property (9) the reflexive property, and 
denote by R the class of reflexive linear estima- 
tors. Linear estimators which satisfy (8) will be 
called parareflexive, and their class will be de- 
noted by P. Estimators in P~ will be called 
hyperreflexive. 

Under (i), m = ~i + 8x and R o = ~/X + 8, so that 
formula (6) becomes 

MSE(r[<, ~) = ~' V~ + ~e (~,i_ i/:)2 (iO) 

if r is reflexive and 

MSE(r I<, u) = a' Va (ii) 

if r is hy_perreflexive. 
M. C. Hutchison [3] noted the relationship (9) 

upon investigation of the properties of six spe- 
cific ratio-type estimators under (i) with ~ = 0. 
Observe that if there is some constant R for which 

yk = Rx~ for all k, then a reflexive estimator 
will always yield R as the ratio estimate and Y 
as the mean estimate. Thus, there is some intui- 
tive appeal for property (9). Reflexive linear 
estimators can also be called ratio-type 
estimators. 

Property (8)_indicates a kind of unbiasedness-- 
the "weights" X • a_ add to i. Either (9) or (8) 
is a useful constraint to place upon a linear es- 
timator, as are both (9) and (8) together. Hyper- 
reflexive estimators can also be called regres~0n- 
type estimators. They are "t-unbiased" under 
(i).: 

Expression (iO) does not contain 8, and (il) 
contains neither ~ nor 8. Thus the a priori 
knowledge (except for the basic form) need not be 
specific as (i) indicates, when one restricts the 
class of linear estimates somewhat. Of cours~ X 
and V are still quite crucial. 
4. Optimization 

_ 

= 'V denote the opal- Let r* = (a*)' X and r au S 
mal (with respect to C.~.p. ) reflexive and 

hyperreflexive estimators, respectively, of R. 
The formulas for a* and r* are: 

Wx + [a2@][QxlWX - QxxWl] 
a* = ~ ~ ~ 

"~ Qxx 

and (12) 

r* = Qx~ _ + [~2~][QxlQxy - QxxQly ] 

Qxx 
_i 

where W = V ; 

Qzt = . . . .  z'Wt for vectors z,t (e.g., QXI 

2 

A = QxxQII - Qxl ; and 

= (Qxl - QXX/~ + (Qxx + ~2A)" 

The formulas for a H and r H are 

(QII X - Qxl )wx + (Qxx - Qxl W)Wl 
aH= 

and 
-- _~ -- 

(Q::X- Qx~.!Q~y., (Qxx- Qx.:,X)Q:y 
r H . . . .  

X& 

= x'WI 

I 
I 

J 

13) 

(14) 

Formulas (12)-(14) are derived by means of the 
method of Lagrange multipliers, using the appro- 
priate C.a.p. MSE equation--(10) or (ll)--with 
the appropriate set of side conditions - (9) for 
r* or both (8) and (9) for r H, respectively. 
REMARKS : 
i. a H can be shown to be the limit of a* as ~2-~o. 3 

~: The estimator r. is due to A. A Hasel (1942) 
]. It " " "M is Invarlant when the matrix V is multi- 

plied by a constant. 
3. There can be developed optimal estimators 
and 8 satisfying certain conditions analogous to 
(8) and (9). The generalized Gauss-Markovtheorem 
shows, under (i) that 

= (QxxQly- QxlQxy )/A and ~ (14a) 

= (QllQxy - QxlQIy)/A. Note rH= ~/X+~. 

4. If V = o2I, then r H = r G. 
(we 1 l-kno, n 

5. If V is diagonal, with~ (x) = d'x 
for some constant d, and if ~ = 0, results) 

J then r* = r C. 

The special case 5.is interesting for two reasons: 
a) The resulting estimator r = Q /Qxx goes to R 
as n ÷ N even if in fact ~ #Co, w~reas for other 
functions ~)(x), TQ~/Qx does not converge to R 
when ~ = O. b) situation can occur very fre- 
quently in practice. For example, let x be an 
integer-valued variable denoting the number of 
units of interest (e.g., persons) in a sample unit 
(e.g., housing unit) and let y denote some aggre- 
gate with respect to the units of interest. If 
the y's for units of interest are independent and 
identically distributed, then E(ylx =s) = s'8, 
where 8 = E(y]x =i), and Var(y]x = s) = s'o 2 
where 02 = Var(ylx = i), and r* = r_ indeed. G 
5. Comparisons of Reflexive Estimators 

We compare r* and r. with~the estimators rE, rc$ 
and rQ (due to Quenou~ille) to note the improv-emen-ts 
in MSE of the former estimators over their more 
classical counterparts for several sample sizes. 
We use formula (i0), useful in practice as well 
as theory. The formula for rQ is: 
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rQ = n'r C - (n-l)r D 

n ny - Yk 
where r D = 1 l - 

n k= 1 nx - x k 

(15) 

The values given in Table 1 are estimates of 
MSE(rlD) for each of the five estimators, where 
D = SRS. The x-distributions are discrete with 
finitely - many (s, say) x-values but we take 
N = ~. All populations are assumed to satisfy (i), 
and the parameter ~ and the function ~(x)=Var(ylx ) 
are provided, thus making V a diagonal matrix. 

The x-distributions for all populations except 
D contain x=0; thus there is a positive, though 
small, probability that a sample type will contain 
all zeros (in which case no estimator will be 
mathematically defined) or only one nonzero (in 
which case r_ is still undefined. 

For population A, x is distributed as Binomial 

(~,p) with ~ = 12 and p = .5 the conditional 
distribution of y given x has ~ = i00, and 

q~(x) = .0001 + 1000x 2. 

Populations B-F are defined in the following 
charts. The same random start was used in these 
populations in order to better compare the results 
between them. 

Populations B-F: 
Probability Distribution for x Values 

X-set 15 .35 .25 15 .05- .025 ~015 .01 

i 0 I i~- 2 :J _4 6 iO 20 
_ 2 0 i 2 .... 3 4 ..... 6 i0 70 

3 2 3 4 5 6 8 12 22 

Populations B-F: Parameters 

Population Name x-Set 
B i i 

C 2 i 

D 3 1 

E 1 0 3 

F i i 
MEAN SQUARE ERROR OF RATIO ESTIMATORS UNDER SRS (N = m) 

cp(x) 
l+x ~ 
1 +x 2 

i + (x-2) 2 

i +x 2 

l+x 

Popu- Sample No. of Monte MSE(r C) MSE(rQ) MSE(r G) MSE(r*) 
lation Size Carlo Samples 

MSE(r H) 

2 EXACT 542.0 611.4 2059. 524.9 
4 300 273.5 285.0 476.1 261.3 
8 150 137.3 139.8 152.7 130.5 

16 75 68.73 69.30 70.59 65.20 
32 37 34.45 34.59 34.58 32.75 
64 18 17.28 17.32 17.11 16.43 

128 9 8.64 8.723 8.502 8.214 

2059. 
466.8 
147.4 
68.26 
33.56 
16.65 
8.260 

2 EXACT 1.397 1.052 1.813 .9907 
4 EXACT .7283 .7519 .6240 .4743 
8 400 .3399 .4067 .2843 .2250 

16 200 .1708 .2133 .1465 .1087 
32 i00 .08829 .1022 .07712 .05323 
64 50 .04622 .04991 .04488 .02648 

128 25 .02343 .02430 .02435 .01319 

1.813 
.5689 
.2366 
.ii00 
.05343 
.02652 
.01320 

2 EXACT 1.459 1.071 1.507 1.017 

4 EXACT .7806 .8083 .6895 .4912 
8 400 .3982 .5654 .3376 .2365 

16 200 .2501 .4643 .1866 .1152 
32 i00 .1788 .3340 .1150 .05667 
64 50 .1214 .1946 .08868 .02827 

128 25 .07229 .09480 .07410 .01409 

1.507 
.6252 
.2634 
.1195 
.05750 
.02846 
.01414 

2 EXACT .1936 .2520 .4533 .1557 
4 EXACT .1148 .1497 .1560 .07789 
8 400 .06656 .08485 .07109 .03983 

16 200 .03774 .04497 .03663 .02097 
32 i00 .02018 .02233 .01928 .01114 
64 50 .01044 .01101 .01122 .00591 

128 25 .00532 .00546 .00609 .00309 

.4533 

.1422 

.05916 

.02750 

.01336 

.00663 

.00330 

2 EXACT 1.089 .9635 1.813 .9320 
4 EXACT .5412 .6473 .6240 .4515 
8 400 .2722 .3462 .2843 .2165 

16 200 .1470 .1858 .1465 .1057 
32 i00 .07888 .09191 .07712 .05221 
64 50 .04133 .04512 .04488 .02604 

128 25 .02127 .02227 .02435 .01302 

1.813 
.5689 
.2366 
.ii00 
.05343 
.02652 
.01320 

2 EXACT 1.089 .5931" .9827 .7023 
4 EXACT .4202 .3915 .3292 .2791 
8 400 .1735 .1676 .1300 .1180 

16 200 .08132 .08031 .05670 .05390 
32 I00 .03807 .03756 .02618 .02529 
64 50 .01981 .01957 .01265 .01233 

128 25 .009024 .008910 .006110 .006024 

.9827 

.3228 

.1256 

.05487 

.02550 

.01239 

.006037 

*rQ is not really better than r* on F for samples of size 2; it just appears that way 
because rQ is defined on fewer samples than either r C or r*, and its average MSE over 
those samples is less than that of r* on its larger set of samples. 
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For populations A, G, and H, the components of 
C.a.p. MSE(rlK'SRS) were computed for all samples 
of size 2 and averaged appropriately. Samples of 
size 4 were selected by a Monte Carlo procedure. 
Two successive samples of size 4 were combined in- 

to one sample of size 8, and so on to size 128. 
For populations B through F, the exact values 
(subject only to rounding) of MSE(rI<,SRS) were 
computed for both n=2 and n=4, and the Monte Carlo 
p~ocedure began at n=8. Results for sample sizes 
2 ~, k = 1 to 7 are presented. ~ 

The MSE's are conditional given that the esti- 
mators in question are defined. The estimators 

r G and r H are undefined if all x's are equal. 
Quadratic functions ~(x) were chosen because the 

reductions in MSE were sizable; linear functions 
such as ~(x) = c + dx or functions such as ~(x) = 
c + 6x t, t m 0 or t ~ i, would have shown little 

or no reduction in MSE. In practice, the varia- 
tion of ~(x) may be highly irregular (populations 

G and H, table 2). 

Although there is sampling error in the estima- 
tor of MSE(rI<,D), the following assertions can 
be made with the usual caveats related to small 
numbers of Monte Carlo samples for n ~ 4 (n ~ 8): 

(i) For populations A and F, little is gained by 

using r* or r H in place of r G. For population F, 
the reason is that ~(x) = 1 + x -- a situation in 

which r H is approximately the same as r G. For pop- 
ulation A, the reason is that the x-distribution 
has a low relvariance - .0833 - and is symmetric 
and approximately normal rather than skewed, with 
mean far away from the origin. 

(2) Comparing populations B and C, we find that 
increasing greatly the maximum value of x adverse- 
ly affects all the classical estimators under SRS 
but does not affect r* or r H much at all. This is 
the clearest indication that under SRS use of a 
priori knowledge can improve the estimation pro- 
cedure even when the distribution of x is unusual. 

For population C, MSE(r*I<,D = SRS, size n) and 
MSE(rHIK,D = SRS, size n) are approximately pro- 

portional to i/n, whereas for rc, r G the propor- 
tionality is probably more like i/f-n-. This may 
be of interest to Taylor approximation advocates. 

(3) Translating the x-distribution to the right 
appears to help all estimators the same amount 
(compare populations B and D); moving ~ toward 
zero appears to help r C and rQ more than r* and 
leaves r G and r H unchanged, since they do not de- 
pend on ~ (compare populations B and E). 

(4) MSE(rH) does indeed approach MSE(r*) asymp- 
totically, as stated in remark i. However, 
MSE(rHIn = 2) = MSE(rGIn = 2), which suggests that 
r H = r G when n = 2. This, in fact, can be veri- 
fied when V is a diagonal matrix. (See []]], p. i~ 

(5) rQ is poorer than r C for populations A to E 
but better than r C for population F. This is be- 
cause of the shapes of the conditional variance 
functions; only for population F does Or(x) grow 
slowly enough for an estimator like r 0 to be 
superior to r C. (See []]], pp. 45-487) 

6. Populations ' from the."Real World" 

Table 3 contains computations for the two "real 
life" situations: two distributions from economic 
data described in Table i. The population units 
are firms in a particular kind of business, and, 
for both populations, x is the number of employees 
in the firm. In population G, y is the value of 
taxes paid, and in H, y is the value of payroll. 

The linearity was approximately true in the origi- 
nal population so for populations G and H linearity 
is assumed using the true regression coefficients. 
The functions ~G(X) and ~H(X) denote the con- 
ditional variance functions of y, given x, and the 
regression coefficients ~ for y on x are -3.177 
and 12.06 for populations G and H, respectively. 

2. BUSINESS DISTRIBUTIONS 

x Pr[x] ~0G(X) Q0H (x) 

0. .1743 7.5 601. 
i. .2203 9.9 218. 
2. .1464 13.4 330. 
3. .1091 24.0 474. 
4. .0684 27.9 685. 
5. .0507 52.4 871. 
6. .0419 72.2 1067. 
7. .0322 67.7 1156. 
8. .0297 82.8 1490. 
9. .0195 122.7 1528. 

i0. .0084 251.5 3349. 
ii. .0066 226.2 2946. 
12. .0077 188.9 2106. 
13. .0057 184.0 1971. 
14. .0057 331.9 2328. 
15. .0064 370.7 2715. 
16. .0050 303.2 2641. 
17. .0042 599.9 4187. 
18. .0042 496.8 3092. 
19. .0034 405.2 3382. 
20.5 .0098 931.3 4457. 
24. .0094 1344.4 5607. 
29.5 .0105 2929.2 7482. 
39. .0096 10276.5 12434. 
80. .0107 28488.0 82026. 

The values of MSE(r) were calculated for r = rc, 
rG, r*, and r H with the value of ~0(x) guessed at 
in the formula. In each case, guess 1 is linear, 
guess 2 is quadratic, and guesses 3 and 4 are of 
the form Q0(x) = cxg + D, with guess 3 attempting 
to fit the entire range of x and guess 4 only 
those x up to 16. The results appear in Table 2. 

For population G, the reductions in MSE for the 
true Q0are very impressive when compared with rG, 
the better of the two "classical" estimators r C 
and rG, particularly for n _> 8. Quadratic guess 2 
is the best of the four, again with noticeable 
reduction of MSE for n _> 8. Guess 1 is generally 

poorer than rG; guesses 3 and 4 are better than 
r G for n _> 16, with guess 3 better than 4 (guess 4 
is better than guess 3 for small n).2 
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3. MSE RESULTS ON BUSINESS DATA: 
COMPARISON OF TRUE OPTIMAL AND OPTIMAL WITH GUESSED ~(x) 

No. of Monte Guess i a i 
Popu- Size MSE(r C ) MSE(r G ) MSE (r*) MSE (rH) 
lation Carlo Samples MSE(r*) MSE(rH) 

G 2 EXACT 
4 549 
8 275 

16 137 
32 68 
64 34 

128 17 

Popu- Size No. of Monte 
lation Carlo Samples 

2 EXACT 
4 549 
8 275 

16 137 
32 68 
64 34 

128 17 

7.085 11.39 
4.032 1.675 
1.296 .8178 
.8034 .5548 
.5074 .3965 
.2885 .2774 
.1555 .1385 

3.296 11.39 
1.224 1.473 
.4872 .5073 
.2275 .2304 
.ii01 .1107 
.05433 .05445 
.02694 .02697 

3.470 11.39 
1.570 1.691 
.9156 .8969 
.6474 .6387 
.4329 .4299 
.2586 .2579 
.1473 .1471 

2 b Guess 2 

MSE(r*) MSE (rH) 

3 C Guess 3 

MSE (r*) MSE(r H ) 

4 d Guess 4 
MSE(r*) MSE (rH) 

3.346 11.39 
1.299 1.533 
.5497 .5716 
.2666 .2705 
.1323 .1331 
.06591 .06611 
.03285 .03290 

3.704 11.39 
1.673 1.789 
.8324 .8294 
.4400 .4396 
.2105 .2106 
.09961 .09961 
.04864 .04864 

3.589 11.39 
1.557 1.701 
.8183 .8226 
.4753 .4757 
.2658 .2658 
.1426 .1426 
.07537 .07537 

aGuess i: co(x) = 7 + 35x. bGuess 2: co(x) = 7 + 5x + 2x 2. CGuess 3: Qo(x) = 10x l's + .001. 

dGuess 4: ~o(x) = 10x 1"25 + .001. 

No. of Monte Guess 1 1 
Popu- Size MSE(r C ) MS E (rG) MS E (r*) MSE(r H ) 
lation Carlo Samples MSE(r*) MSE(r H) 

Popu- 
lation 

2 EXACT 
4 527 
8 263 

16 131 
32 65 
64 32 

128 16 

Size 
No. of Monte 
Carlo Samples 

2 EXACT 
4 527 
8 263 

16 131 
32 65 
64 32 

128 16 

162.3 158.1 
65.08 34.75 
15.36 9.151 
5.536 3.741 
2.600 1.807 
1.349 1.002 
.6893 .5601 

2 b Guess 2 

MSE (r*) MSE(r H ) 

64.47 158.1 
22.70 34.63 
8.452 9.104 
3.631 3.669 
1.707 1.708 
.8445 .8441 

63.73 158.1 
21.53 33.58 
7.547 8.267 
3.134 3.192 
1.445 1.451 
.7091 .7098 
.3505 .3506 

3 c Guess 3 
MSE (r*) MSE(r H ) 

92.52 158.1 
35.75 41.05 
15.35 15.41 
6.107 6.102 
2.469 2.469 
1.093 1.093 

64.22 158.1 
22.15 34.47 
8.146 8.861 
3.711 3.687 
1.872 1.834 
1.021 1.006 
.5425 .5380 

d 
Guess 4 4 
MSE(r*) MSE(r H) 

91.61 158.1 
32.27 37.90 
12.41 12.51 
5.352 5.352 
2.530 2.530 
1.328 1.328 

.7078 .4192 .4190 .5072 .5072 .7078 

aGuess I: ~(x) = 400 + 200x. bGuess 2: C0(x) = 608 - 104x + 13x 2. CGuess 3: co(x) = 220xi'3+ .00L 

dGuess 4: ~(x) = 200x °'9 + .001. 

Population H does not have as large a variation 
in the function ~ as does population G, so that 
the improvements, if any, are smaller. Except for 
r* for n = 2,4, reductions in MSE for r* and rH, 
when compared to rG, do not exceed 25 percent ex- 
cept for n ~ 64 (as compared with n ~ 8 for popu- 
lation G). Guess 2 is a marginal improvement over 
r G except for n ~ 64. Except for r* (n ! 8), 
guess 1 (for both r* and rH) is about as efficient 
as r G. Guesses 3 and 4 are almost always less ef- 
ficient than r C or r G. Again, guess 3 is better 
than 4 for large n, and worse for small n. 2 

For both populations G and H, there seems to be 
a turning point: for some critical n, say ~, the 

Priori knowledge (or a suitable guess for it) 

really makes a difference--for n ~ ~, reductions 
in MSE are quite sizable. All four guesses yield 
improvements over r C (as opposed to rG) for popu- 
lation G, and also (for most n) for population H. 

7. Final Comments 

The relative efficiency of r* and r H over r C 
and r G depends on the shape of both the distribu- 
tion of x and of the function ~0(x), as well as on 
the validity of the assumption E(ylx) = ~ + Bx. 
A low coefficient of variation of x (as in popu- 
lation A), or a linear function ~0(x) (as in popu- 
lation F) results in little reduction in MSE; one 

may as well use r C or r G. Furthermore, a poor 
guess of ~.(x) may result in an increase in MSE. 
The examples presented, however, show that sig- 
nificant gains in precision are sometimes possibl% 
even when ~e(x) is guessed. It is felt, though 

not tested, that r* and r H perform well when the 
linearity of E(ylx ) is only approximately true. 

The applicability of this theory is toward re- 
curring surveys and toward surveys with a census 
base for determining guesses of m and Q0. The 
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theory presented may be extended to the errors- 
in-variable context, and is more clearly general- 
izable to stratified sampling (both stratum-by- 
stratum and over-all-strata estimators) and to a 
p-dimensional concomitant vector (p>l). 

Linear superpopulation models are hardly new. 
R. M. Royall (e.g., in [8]) has advocated use of 
estimators and sample designs which minimize some- 
thing akin to C.a.p. MSE. Two of the many other 
papers which treat this subject are by Cassel, 
S~nda], and Wretman []] and by Scott and Smith 
[9]. Finally, A. A. Hasel presented r H in 1942! 

The major problem is, of course, the determina- 
tion of ~ and V--or of V alone (if (8) and r H 
are used). Many interpretations of m and V are 
possible- both sampling and nonsampling error 
may be included. More testing of the sensitivity 
of r* and r H to < is necessary; alternative K's 
need be examined. Naive assumptions such as 
V = o2I or ~(x) = dx will often result in classi- 
cal estimators, which may suffice if no other a 
~riori information is available. However, it is 
believed that in a recurring survey or special 
survey with a data base in a census, it is pos- 
sible to obtain practical guesses for ~ and V. 

i The development here can be shown to be equiv- 
alent to that in Royall and Herson ([8], 881-3), 
except that they deal with totals rather than 
ratios and, hence, are restricted to a finite pop- 
ulation. Instead of using a sample indicator 
function u(s) which is zero for all nonsample 
elements,~they.make use of the nonsample moments 
(j=0,1 .... )(~xJ~)k~s. They refer to estimators 
chosen to be uh-biased under ~ model ~ as^ 
"t-unbiased." They compare T[0,1:x]and T[I,I:x] 
under the model ~(l,l:x), analogous to the com- 
parison of r* and r H as shown here. In general, 
however, they are concerned more with sample 
design than with estimation. Moreover, they do 
not exhibit their estimators in such a way to show 
the importance of the matrix V (the conditional 
variance function '.@(x). 

An estimator which is unbiased under a sample 
design with function p is called, in the termin- 
ology of R. M. Royall [8] and. others,"p-unbiased." 
The alternative ratio estimators of Hartley and 

Ross (rHR) and M. R. Mickey (EM)t are p- unbiased 
when p is derived from SRS. imators which are 
chosen to be unbiased under a model such as (i), 
independent of the parameters in E(ylx) , are 
called "~- unbiased." r G is ~- unbiased under 
(i); r C is ~ - unbiased under (i) if ~ = 0. 

2This situation is comparable to that of popu- 
lation C: a "big" x - even if rare - will raise 
the C.a.p. MSE, more so for a large n than for a 
small one, since when n is large, a "big" x is 
more likely to appear in the sample. In this 
situation the low weighting implied by r* and r H 
can help immensely. See []]], p. 45. 

3See [II], pp. 13-15. 

4See []]], pp. 7-12, and 27-32 for a more 
detailed discussion of these problems. 
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