Paul H. Tomlin, Bureau of the Census

1. Introduction

Ratio- and regression-type sample estimators have often been used instead of the "unbiased" sample mean \bar{y} to estimate the population mean \bar{Y}. Both types of estimators make_use of a concomitant variable \bar{x} having known mean \bar{X}. The simplest ratio-type estimator is given by \bar{y}_{C}, and the simplest regression-type estimator by \bar{y}_{G}. The formulas for these estimates are given below:

$$
\overline{\mathrm{y}}_{\mathrm{C}}=r_{C} \overline{\mathrm{x}}, \text { where } \mathrm{r}_{\mathrm{C}}=\overline{\mathrm{y}} / \overline{\mathrm{x}}
$$

$$
\bar{y}_{G}=r_{G} \bar{X}, \text { where } r_{G}=\{\bar{x}\}^{-1}\{\bar{y}-\hat{\beta}(\bar{x}-\bar{x})\}
$$

Here \bar{x} is the sample mean for the variable x, and $\beta=s_{x y} / s_{x}{ }^{2}$, the sample regression coefficient. Note that a vague, "global" form of a priori knowledge is used-the existence of a moderate or high correlation between x and y over the entire population. In such a case \bar{y}_{C} and \bar{y}_{C} will have lower mean square errors (MSE) than $\frac{Y_{r}}{y}$, and so almost all statisticians will choose \bar{y}_{C} or \bar{y}_{G}, even if biased in place of \bar{y}.

The estimators r_{C} and r_{G} are biased (with respect to simple random sampling (SRS) ${ }^{1}$ unless certain conditions on $E(y \mid x)$ are met. As a result, a number of statisticians have proposed alternatives to ${ }_{C}$. which are designed to reduce the bias over SRS, perhaps to zero. Studies usually, but not always, Monte Carlo) have been performed in which the alternatives have been compared with r_{C} and each other with respect to MSE - on "real" populations and over a superpopulation model. In the latter situation the usual model is the following:

Two of the better papers in this area are [3] and [7]. Most tests under (1) have been performed with $\varphi(\mathrm{x})=\delta \mathrm{x}^{\mathrm{t}}$, where $0 \leq \mathrm{t} \leq 2$ and $\delta>0 .^{2}$

It turns out that the shape of the populationthe distribution of x and the parameters α, \bar{x}, and $\phi^{\prime}(x)$ (but not β) -affects the performance of the estimators. This suggests that these parameters be used, or approximated, in the creation of an estimator which is in a class containing $r_{C}, r_{\text {, }}$, and the proposed alternatives and has smaller M'SE than any of them. This a priori knowledge is more "local" than that of the assumed high correlation. Obtaining such knowledge may involve much work, but if the knowledge is reasonably accurate, great gains in precision of estimation will result. However, a poor choice of ψ, or a nonlinear function $E(y \mid x)$ may result in an estimator less efficient than r_{C} or r_{G}. See [11], pp. 45-48.
2. Conditional a priori Mean Square Error
(C.a.p. MSE) for Linear Estimators

Let the symbol k denote "a priori knowledge." In our situation, K consits of the model (1) not so much the actual parameters but the general shape of the functions $E(y \mid x)$ and $\operatorname{Var}(y \mid x)$.

We assume a universe U of size N. Let u be a sample indicator function-an $N \times 1$ vector \tilde{r} of integers, u_{k} representing the number of times universe element $k(1 \leq k \leq N)$ appears in the sample. Let $p(\underset{\sim}{u} \mid D)$ be the p robability that $\underset{\sim}{u}$ could be
selected via a design D. Let us for simplicity assume $u_{k}=0$ or 1 . We then define, for a function f defined on samples u.

$$
\begin{equation*}
\operatorname{MSE}(f \mid \kappa ; D)=\Sigma p(\underset{\sim}{u} \mid \mathrm{D}) \operatorname{MSE}(f \mid \kappa ; u) \tag{2}
\end{equation*}
$$

where $\operatorname{MSE}(f \mid \kappa ; u)$-ye \tilde{t} to be defiñed- is that contribution to $\operatorname{MS̃} E(f \mid K ; D)$ associated with sample u. We refer to $\operatorname{MSE}(f \mid K ; u)$ as the conditional a priorri mean square error of ${ }^{\sim} f$, given K and u, and denote it by C.a.p. MSE. We will also use trhe initials "C.a.p." for other conditional a priori functions such as means and variances.

We now restrict our interest to linear estimators r of the ratio $R=\bar{Y} / \bar{X}$. Our a priori knowledge K consists of the a priori mean mof the (Nxl) vector y and the ($\bar{N} \times N)$ a priori covariance matrix $\frac{\mathrm{V}}{\mathrm{M}}$. The universe mean $\overline{\mathrm{Y}}$ then has an a priori mean $\bar{M}=N^{-I} \Sigma M_{k}$ and an a priori variance $\mathrm{N}^{-\frac{1}{\sim}}{ }^{1} V \frac{1}{\bar{X}}$. The ratio R also has an a priori mean, $R_{0}=\sim \bar{M} / \bar{X}$. Note $\bar{M}=N^{-1}\left(1_{\sim}^{\prime} m\right)$.
The linear estimator r is defined by the vector $\underset{\sim}{a}=\underset{\sim}{a}(\underset{\sim}{u}):$
$r=a^{\prime}: \underset{\sim}{y}$
where \tilde{a}_{k} is $\tilde{\sim}$ a function of $\underset{\sim}{u}$ only, not of $\underset{\sim}{y}$, such
that $a_{k}=0$ whenever $u_{k}=\tilde{0} ._{1}$
Then the conditional a priori mean and variance
or r, given k and u, are given by

$$
\left.\begin{array}{l}
E(r \mid \kappa ; u)=a^{\prime} m \tag{4}\\
\operatorname{Var}(r \mid \kappa ; \underset{\sim}{u})=a^{\prime} \operatorname{Va}
\end{array}\right\}
$$

We now define C.a.p. $\operatorname{MSE}(r \mid \kappa ; u)$ with respect to the a priori ratio R_{0} :

$$
\begin{equation*}
\text { C.a.p. } \operatorname{MSE}(r \mid \kappa ; \underset{\sim}{u})=E\left[\left(r-R_{o}\right)^{2} \mid \kappa ; u\right] \tag{5}
\end{equation*}
$$

We can decompose (5) into the a priori variance of r and the squared difference between the a priori mean of the sample estimate and the $\frac{a}{a}$ priori ratio R_{o} :

When averaged over the design D, the two components of (6) are within-sample C.a.p. variance and between-sample C.a.p. MSE, given K. The first term contains only V, and the second, only m (and $R_{0}=\bar{M} / \bar{X}$). By a "consistent" estimator ${ }^{\sim}$ (not previously defined) we mean, for finite N, an estimator $a^{\prime} y$ such that $a_{\sim}^{\prime} \underset{\sim}{m}=R_{0}$ when $n=N\left(\underset{\sim}{u}={\underset{\sim}{N}}^{(}\right)$. Clearly $\tilde{t} h \tilde{i}$ is importañ for a meaningfül sét of estimators. However in (6) the first term goes to an a priori within-census variance which will not be zero, in general. We can think of k as a superpopulation structure, and $\operatorname{Var}\left(r \mid K ;{ }_{\sim}^{l}{ }_{N}\right)$ as the variance due to that structure.

From (2) it is clear that we can minimize $\operatorname{MSE}(r \mid K ; D)$ by minimizing MSE $(r \mid K ; u)$ for any fixed u. Hence, we reduce the problem \tilde{f} rom N to n dimentions, n being the number of distinct units in the sample u. Hence, from here on, m and V are assumed to be rẽlated to the n-dimensionã subset of nonzero elements of the Nx1 vector $\underset{\tilde{\sim}}{ }$. The sample size n may be variable over D, but thĩ ${ }^{\text {s }}$ need not conconcern us. However u has been determined, we do the best we can with it. It is the only sample
available.

3. Reflexive, Parareflexive, and Hyperreflexive Estimators

We now assume that $\underset{\sim}{a}$ is a function only of $\underset{\sim}{x}$ and not of any other properties of u, as in the following examples:
Let r_{U} denote \bar{y} / \bar{x}, the estimate of R derived from the unbiased sample mean \bar{y}, and let $a_{U k}, a_{C k}$, and a_{Gk} denote the $\mathrm{k}^{\text {th }}$ element of the vectors a_{U}, a_{C}, and ${\underset{\sim}{G}}_{G}$ as given for estimators r_{U}, r_{G}, and r_{G}, respectively. If the sample size is n, we have
$a_{U k}=1 /(n \bar{X}), \quad a_{C k}=1 /(n \bar{x})$
and $\left.a_{G k}=\frac{1}{\overline{\bar{x}}}\left[\frac{1}{\mathrm{n}}+\frac{(\overline{\mathrm{x}}-\overline{\mathrm{x}})\left(\mathrm{x}_{\mathrm{k}}-\overline{\mathrm{x}}\right)}{(\mathrm{n}-1) \mathrm{s}_{\mathrm{x}}^{2}}\right] \quad\right\}$
(7a,b,c)
where $s_{x}{ }^{2}=(n-1)^{-1} \Sigma\left(x_{k}-\bar{x}\right)^{2}$.
We are not interested in the set of all linear estimators; we are, however, interested in certain subsets. Consider expressions (3) and (7). For r_{U} and r_{G} we have, for all x :

$$
\begin{equation*}
{\underset{\sim}{a}}^{\prime} \underset{\sim}{1}=1 / \overline{\mathrm{X}} \tag{8}
\end{equation*}
$$

whereas for r_{C} and the proposed ratio-type alternatives in the literature along with $r_{G}=\bar{y}_{G} / \bar{x}$, we have the following:

$$
\begin{equation*}
{\underset{\sim}{a}}^{\prime} \underset{\sim}{x}=1 \tag{9}
\end{equation*}
$$

for all $\underset{\sim}{x} . \bar{y}$ does not satisfy (9), nor does r_{C} satisfy (8).
We call property (9) the reflexive property, and denote by R the class of reflexive linear estimators. Linear estimators which satisfy (8) will be called parareflexive, and their class will be denoted by P. Estimators in $P \cap R$ will be called hyperreflexive.

Under (1), $\underset{\sim}{m}=\alpha \underset{\sim}{1}+\beta \underset{\sim}{x}$ and $R_{o}=\alpha / \bar{X}+\beta$, so that formula (6) becomes

$$
\begin{equation*}
\operatorname{MSE}(r \mid K, \underset{\sim}{u})=\underset{\sim}{a}{ }^{\prime} \operatorname{Va}+\alpha^{2}\left(\underset{\sim}{a}{ }^{\prime} \underset{\sim}{1}-1 / \overline{\mathrm{X}}\right)^{2} \tag{10}
\end{equation*}
$$

if r is reflexive and
$\operatorname{MSE}(r \mid k, \underset{\sim}{u})={\underset{\sim}{a}}^{\prime} \underset{\sim}{V a}$
if r is hyperreflexive.
M. C. Hutchison [3] noted the relationship (9) upon investigation of the properties of six specific ratio-type estimators under (1) with $\alpha=0$. Observe that if there is some constant R for which $y_{k}=R x_{k}$ for all k, then a reflexive estimator \underline{r} will always yield R as the ratio estimate and \bar{Y} as the mean estimate. Thus, there is some intuitive appeal for property (9). Reflexive linear estimators can also be called ratio-type estimators.

Property (8) indicates a kind of unbiasednessthe "weights" $\overline{\mathrm{X}} \cdot \mathrm{a}_{\mathrm{k}}$ add to 1. Either (9) or (8) is a useful constraint to place upon a linear estimator, as are both (9) and (8) together. Hyperreflexive estimators can also be called regressiontype estimators. They are " ξ-unbiased" under (1). ${ }^{1}$

Expression (10) does not contain β, and (11) contains neither α nor β. Thus the a priori knowledge (except for the basic form) need not be specific as (1) indicates, when one restricts the class of linear estimates somewhat. Of course, \bar{X} and V are still quite crucial.

4. Optimization

Let $r^{*}=\left(a^{*}\right)^{\prime} y$ and $r_{H}={\underset{\sim}{H}}^{\prime} y$ denote the optimal (with res̃pect to C. $\mathrm{A} . \mathrm{p} .{ }^{\sim} \mathrm{HSE}$) reflexive and
hyperreflexive estimators, respectively, of R. The formulas for ${\underset{a}{*}}^{*}$ and r^{*} are:

where $\mathrm{W}=\mathrm{V}^{-1}$;
$Q_{z t}=\underset{\sim}{z}{ }^{\prime} W \underset{\sim}{f}$ for vectors $\underset{\sim}{z, t} \underset{\sim}{t}\left(e . g ., Q_{X 1}=\underset{\sim}{x}{ }_{\sim}^{\prime} \underset{\sim}{1}\right)$
$\Delta=Q_{x x} Q_{11}-Q_{x 1}{ }^{2}$; and
$\Phi=\left(Q_{x 1}-Q_{X X} / \overline{\mathrm{X}} \div\left(Q_{\mathrm{xx}}+\alpha^{2} \Delta\right)\right.$.
The formulas for ${\underset{-H}{H}}$ and r_{H} are

Formulas (12)-(14) are derived by means of the method of Lagrange multipliers, using the appropriate C.a.p. MSE equation-(10) or (11)-with the appropriate set of side conditions - (9) for $r *$ or both (8) and (9) for r_{H}, respectively. REMARKS:

1. ${ }_{a}{ }_{H}$ can be shown to be the limit of a^{*} as $\alpha^{2} \rightarrow \infty{ }^{3}$ 2. The estimator r_{H} is due to A. A. Hasel (1942)
[2]. It is invariant when the matrix V is multiplied by a constant.
2. There can be developed optimal estimators $\hat{\alpha}$ and $\hat{\beta}$ satisfying certain conditions analogous to
(8) and (9). The generalized Gauss-Markov theorem shows, under (1) that
$\left.\begin{array}{ll}\hat{\alpha}=\left(Q_{x x} Q_{1 y}-Q_{x 1} Q_{x y}\right) / \Delta & \text { and } \\ \hat{\beta}=\left(Q_{11} Q_{x y}-Q_{x 1} Q_{1 y}\right) / \Delta . & \text { Note } r_{H}=\hat{\alpha} / \bar{X}+\hat{\beta} .\end{array}\right\}$ (14a) 4. If $V=\sigma^{2} I$, then $r_{H}=r_{G}$.
3. If $V=\sigma^{2} I$, then $r_{H}=r_{G}$.
4. If V is diagonal, with $G(x)=d \cdot x$
for some constant d, and if $\alpha=0$,
then $r^{*}=r_{C}$.

The special case 5 -is interesting for two reasons: a) The resulting estimator $r_{C}=Q_{x y} / Q_{x y}$ goes to R as $n \rightarrow \mathbb{N}$ even if in fact $\alpha \neq 0$, whereas for other functions $\varphi(x), Q_{x y} / Q_{x x}$ does not converge to R when $\alpha=0$. b) The sixtuation can occur very frequently in practice. For example, let x be an integer-valued variable denoting the number of units of interest (e.g., persons) in a sample unit (e.g., housing unit) and let y denote some aggregate with respect to the units of interest. If the y 's for units of interest are independent and identically distributed, then $E(y \mid x=s)=s^{0} \beta$, where $\beta=E(y \mid x=1)$, and $\operatorname{Var}(y \mid x=s)=s \cdot \sigma^{2}$ where $\sigma^{2}=\operatorname{Var}(y \mid x=1)$, and $r^{*}=r_{C}$ indeed. 5. Comparisons of Reflexive Estimators

We compare r^{*} and r_{H} with the estimators r_{C}, r_{G}, and r_{Q} (due to Quenouille) to note the improvements in MSE of the former estimators over their more classical counterparts for several sample sizes. We use formula (10), useful in practice as well as theory. The formula for r_{Q} is:
$\left.\begin{array}{c}r_{Q}=n \cdot r_{C}-(n-1) r_{D} \\ \text { where } r_{D}=\frac{1}{n} \sum_{k=1}^{n} \frac{n \bar{y}-y_{k}}{n \bar{x}-x_{k}} \quad .\end{array}\right\}$
The values given in Table 1 are estimates of $\operatorname{MSE}(r \mid D)$ for each of the five estimators, where $D=$ SRS. The x-distributions are discrete with finitely - many (s, say) x-values but we take $\mathrm{N}=\infty$. All populations are assumed to satisfy (1), and the parameter α and the function $\varphi(x)=\operatorname{Var}(y \mid x)$ are provided, thus making V a diagonal matrix.

The x-distributions for all populations except D contain $\mathrm{x}=0$; thus there is a positive, though small, probability that a sample type will contain all zeros (in which case no estimator will be mathematically defined) or only one nonzero (in which case r_{0} is still undefined.

For population A, x is distributed as Binomial (ν, p) with $v=12$ and $p=.5$ the conditional distribution of y given x has $\alpha=100$, and
$\varphi(x)=.0001+1000 x^{2}$.
Populations B-F are defined in the following charts. The same random start was used in these populations in order to better compare the results between them.

Populations B-F:
Probability Distribution for x Values

x-Set	.15	.35	.25	.15	.05	.025	.015	.01
1	0	$\overline{1}$	2	3	4	6	10	20
2	0	1	2	3	4	6	10	70
3	2	3	4	5	6	8	12	22

Populations B-F: Parameters

Population Name	$x-$ Set	α	$C(x)$
B	1	1	$1+x^{2}$
C	2	1	$1+x^{2}$
D	3	1	$I+(x-2)^{2}$
E	1	0.3	$1+x^{2}$
F	1	1	$1+x$

1. MEAN SQUARE ERROR OF RATIO ESTIMATORS UNDER SRS ($N=\infty$)

Popu1ation	Sample Size	No. of Monte Carlo Samples	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{C}}\right)$	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{Q}}\right)$	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{G}}\right)$	MSE (r^{*})	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{H}}\right)$
A	2	EXAC'	542.0	611.4	2059.	524.9	2059.
	4	300	273.5	285.0	476.1	261.3	466.8
	8	150	137.3	139.8	152.7	130.5	147.4
	16	75	68.73	69.30	70.59	65.20	68.26
	32	37	34.45	34.59	34.58	32.75	33.56
	64	18	17.28	17.32	17.11	16.43	16.65
	128	9	8.64	8.723	8.502	8.214	8.260
B	2	EXACT	1.397	1.052	1.813	. 9907	1.813
	4	EXACT	. 7283	. 7519	. 6240	. 4743	. 5689
	8	400	. 3399	. 4067	. 2843	. 2250	. 2366
	16	200	. 1708	. 2133	. 1465	. 1087	. 1100
	32	100	. 08829	. 1022	. 07712	. 05323	. 05343
	64	50	. 04622	. 04991	. 04488	. 02648	. 02652
	128	25	. 02343	. 02430	. 02435	. 01319	. 01320
C	2	EXACT	1.459	1.071	1.507	1.017	1.507
	4	EXACT	. 7806	. 8083	. 6895	. 4912	. 6252
	8	400	. 3982	. 5654	. 3376	. 2365	. 2634
	16	200	. 2501	. 4643	. 1866	. 1152	. 1195
	32	100	. 1788	. 3340	. 1150	. 05667	. 05750
	64	50	. 1214	. 1946	. 08868	. 02827	. 02846
	128	25	. 07229	. 09480	. 07410	. 01409	. 01414
D	2	EXACT	. 1936	. 2520	. 4533	. 1557	. 4533
	4	EXACT	. 1148	. 1497	. 1560	. 07789	. 1422
	8	400	. 06656	. 08485	. 07109	. 03983	. 05916
	16	200	. 03774	. 04497	. 03663	. 02097	. 02750
	32	100	. 02018	. 02233	. 01928	. 01114	. 01336
	64	50	. 01044	. 01101	. 01122	. 00591	. 00663
	128	25	. 00532	. 00546	. 00609	. 00309	. 00330
E	2	EXACT	1.089	. 9635	1.813	. 9320	1.813
	4	EXACT	. 5412	. 6473	. 6240	. 4515	. 5689
	8	400	. 2722	. 3462	. 2843	. 2165	. 2366
	16	200	. 1470	. 1858	. 1465	. 1057	. 1100
	32	100	. 07888	. 09191	. 07712	. 05221	. 05343
	64	50	. 04133	. 04512	. 04488	. 02604	. 02652
	128	25	. 02127	. 02227	. 02435	. 01302	. 01320
F	2	EXACT	1.089	. 5931 *	. 9827	. 7023	. 9827
	4	EXACT	. 4202	. 3915	. 3292	. 2791	. 3228
	8	400	. 1735	. 1676	. 1300	. 1180	. 1256
	16	200	. 08132	. 08031	. 05670	. 05390	. 05487
	32	100	. 03807	. 03756	. 02618	. 02529	. 02550
	64	50	. 01981	. 01957	. 01265	. 01233	. 01239
	128	25	. 009024	. 008910	. 006110	. 006024	. 006037

[^0]For populations A, G, and H, the components of C.a.p. MSE (r|K•SRS) were computed for all samples of size 2 and averaged appropriately. Samples of size 4 were selected by a Monte Carlo procedure. Two successive samples of size 4 were combined into one sample of size 8 , and so on to size 128. For populations B through F, the exact values (subject only to rounding) of $\operatorname{MSE}(r \mid K, S R S)$ were computed for both $n=2$ and $n=4$, and the Monte Carlo procedure began at $n=8$. Results for sample sizes ${ }_{2} \mathrm{k}, \mathrm{k}=1$ to 7 are presented. ${ }^{4}$

The MSE's are conditional given that the estimators in question are defined. The estimators r_{G} and r_{H} are undefined if all x 's are equal.

Quadratic functions $\varphi(x)$ were chosen because the reductions in MSE were sizable; linear functions such as $\mathbb{C}(x)=c+d x$ or functions such as $\varphi(x)=$ $c+\delta x^{t}, t \doteq 0$ or $t \doteq 1$, would have shown little or no reduction in MSE. In practice, the variation of $\varphi(x)$ may be highly irregular (populations G and H, table 2).

Although there is sampling error in the estimator of $\operatorname{MSE}(r \mid K, D)$, the following assertions can be made with the usual caveats related to small numbers of Monte Carlo samples for $n \geq 4(n \geq 8)$: (1) For populations A and F, little is gained by using r^{*} or r_{H} in place of r_{G}. For population F, the reason is that $c(x)=1+x--$ a situation in which r_{H} is approximately the same as r_{G}. For population A, the reason is that the x-distribution has a low relvariance - . 0833 - and is symmetric and approximately normal rather than skewed, with mean far away from the origin.
(2) Comparing populations B and C, we find that increasing greatly the maximum value of x adversely affects all the classical estimators under SRS but does not affect r^{*} or r_{H} much at all. This is the clearest indication that under SRS use of a priori knowledge can improve the estimation procedure even when the distribution of x is unusual.

For population $C, \operatorname{MSE}\left(r^{*} \mid \kappa, D=S R S\right.$, size n) and $\operatorname{MSE}\left(\mathrm{r}_{\mathrm{H}} \mid K, \mathrm{D}=\mathrm{SRS}\right.$, size n) are approximately proportional to $1 / n$, whereas for r_{C}, r_{G} the proportionality is probably more like $1 / \sqrt{n}$. This may be of interest to Taylor approximation advocates.
(3) Translating the x-distribution to the right appears to help all estimators the same amount (compare populations B and D); moving α toward zero appears to help r_{C} and r_{Q} more than r^{*} and leaves r_{G} and r_{H} unchanged, since they do not depend on α (compare populations B and E).
(4) $\operatorname{MSE}\left(r_{H}\right)$ does indeed approach $\operatorname{MSE}\left(r^{*}\right)$ asymptotically, as stated in remark 1. However, $\operatorname{MSE}\left(r_{H} \mid n=2\right)=\operatorname{MSE}\left(r_{G} \mid n=2\right)$, which suggests that $r_{H}=r_{G}$ when $n=2$. This, in fact, can be verified when V is a diagonal matrix. (See [11], p. 16)
(5) r_{Q} is poorer than r_{C} for populations A to E but better than r_{C} for population F. This is because of the shapes of the conditional variance functions; only for population F does $O(x)$ grow slowly enough for an estimator like r_{Q} to be superior to r_{C}. (See [11], pp. 45-48.)
6. Populations from the "Real Wor1d"

Table 3 contains computations for the two "real life" situations: two distributions from economic data described in Table 1 . The population units are firms in a particular kind of business, and, for both populations, x is the number of employees in the firm. In population G, y is the value of taxes paid, and in H, y is the value of payroll. The linearity was approximately true in the original population so for populations G and H linearity is assumed using the true regression coefficients. The functions $\varphi_{G}(x)$ and $C_{H}(x)$ denote the conditional variance functions of y, given x, and the regression coefficients α for y on x are -3.177 and 12.06 for populations G and H, respectively.
2. BUSINESS DISTRIBU'TIONS

x	$\operatorname{Pr}[\mathrm{x}]$	$\varphi_{\mathrm{G}}(\mathrm{x})$	$\varphi_{\mathrm{H}}(\mathrm{x})$
0.	.1743	7.5	601.
1.	.2203	9.9	218.
2.	.1464	13.4	330.
3.	.1091	24.0	474.
4.	.0684	27.9	685.
5.	.0507	52.4	871.
6.	.0419	72.2	1067.
7.	.0322	67.7	1156.
8.	.0297	82.8	1490.
9.	.0195	122.7	1528.
10.	.0084	251.5	3349.
11.	.0066	226.2	2946.
12.	.0077	188.9	2106.
13.	.0057	184.0	1971.
14.	.0057	331.9	2328.
15.	.0064	370.7	2715.
16.	.0050	303.2	2641.
17.	.0042	599.9	4187.
18.	.0042	496.8	3092.
19.	.0034	405.2	3382.
20.5	.0098	931.3	4457.
24.	.0094	1344.4	5607.
29.5	.0105	2929.2	7482.
39.	.0096	10276.5	12434.
80.	.0107	28488.0	82026.

The values of MSE(r) were calculated for $r=r_{C}$, r_{G}, r^{*}, and r_{H} with the value of $c(x)$ guessed at in the formula. In each case, guess 1 is linear, guess 2 is quadratic, and guesses 3 and 4 are of the form $\varphi(x)=C x{ }^{g}+D$, with guess 3 attempting to fit the entire range of x and guess 4 only those x up to 16 . The results appear in Table 2.

For population G, the reductions in MSE for the true Care very impressive when compared with r_{G}, the better of the two "classical" estimators r_{C} and r_{G}, particularly for $n \geq 8$. Quadratic guess 2 is the best of the four, again with noticeable reduction of MSE for $n \geq 8$. Guess 1 is generally poorer than r_{G}; guesses 3 and 4 are better than r_{G} for $n \geq 16$, with guess 3 better than 4 (guess 4 is better than guess 3 for small n). ${ }^{2}$

COMPARISON OF TRUE OPTIMAL AND OPTIMAL WITH GUESSED $\varphi(x)$

Popu- lation	Size	No. of Monte Carlo Samples	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{C}}\right)$	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{G}}\right)$	MSE (r*)	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{H}}\right)$	$\begin{aligned} & \text { Guess } 1^{a} \\ & \operatorname{MSE}\left(r^{*}\right) \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ \operatorname{MSE}\left(r_{H}\right) \end{gathered}$
G	2	EXACT	7.085	11.39	3.296	11.39	3.470	11.39
	4	549	4.032	1.675	1.224	1.473	1.570	1.691
	8	275	1.296	. 8178	. 4872	. 5073	. 9156	. 8969
	16	137	. 8034	. 5548	. 2275	. 2304	. 6474	. 6387
	32	68	. 5074	. 3965	. 1101	. 1107	. 4329	. 4299
	64	34	. 2885	. 2774	. 05433	. 05445	. 2586	. 2579
	128	17	. 1555	. 1385	. 02694	. 02697	. 1473	. 1471
Popu- lation	Size	No. of Monte Carlo Samples	$\begin{aligned} & \text { Guess } 2^{b} \\ & \operatorname{MSE}\left(r^{*}\right) \end{aligned}$	$\begin{gathered} 2 \\ \operatorname{MSE}\left(r_{H}\right) \end{gathered}$	$\begin{aligned} & \text { Guess } 3^{\text {c }} \\ & \text { MSE (r*) } \end{aligned}$	$\begin{gathered} 3 \\ \operatorname{MSE}\left(r_{H}\right) \end{gathered}$	$\begin{aligned} & \text { Guess } 4^{\mathrm{d}} \\ & \operatorname{MSE}\left(\mathrm{r}^{*}\right) \end{aligned}$	$\begin{gathered} 4 \\ \operatorname{MSE}\left(r_{H}\right) \end{gathered}$
G	2	EXACT	3.346	11.39	3.704	11.39	3.589	11.39
	4	549	1.299	1.533	1.673	1.789	1.557	1.701
	8	275	. 5497	. 5716	. 8324	. 8294	. 8183	. 8226
	16	137	. 2666	. 2705	. 4400	. 4396	. 4753	. 4757
	32	68	. 1323	. 1331	. 2105	. 2106	. 2658	. 2658
	64	34	. 06591	. 06611	. 09961	. 09961	. 1426	. 1426
	128	17	. 03285	. 03290	. 04864	. 04864	. 07537	. 07537

$\mathrm{d}_{\text {Guess 4: }} \quad C(\mathrm{x})=10 \mathrm{x}^{1.25}+.001$.

Popu- lation	Size	No. of Monte Carlo Samples	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{C}}\right)$	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{G}}\right)$	MSE (r^{*})	$\operatorname{MSE}\left(\mathrm{r}_{\mathrm{H}}\right)$	$\begin{aligned} & \text { Guess } 1 \\ & \text { MSE }\left(r^{*}\right) \end{aligned}$	$\stackrel{1}{\operatorname{MSE}\left(r_{H}\right)}$
H	2	EXACT	162.3	158.1	63.73	158.1	64.22	158.1
	4	527	65.08	34.75	21.53	33.58	22.15	34.47
	8	263	15.36	9.151	7.547	8.267	8.146	8.861
	16	131	5.536	3.741	3.134	3.192	3.711	3.687
	32	65	2.600	1.807	1.445	1.451	1.872	1.834
	64	32	1.349	1.002	. 7091	. 7098	1.021	1.006
	128	16	. 6893	. 5601	. 3505	. 3506	. 5425	. 5380
Popu- 1ation	Size	No. of Monte Carlo Samples	$\begin{aligned} & \text { Guess } 2^{b} \\ & \operatorname{MSE}\left(r^{*}\right) \end{aligned}$	$\stackrel{2}{\operatorname{MSE}\left(r_{H}\right)}$	$\begin{aligned} & \text { Guess } 3^{c} \\ & \operatorname{MSE}\left(r^{\star}\right) \end{aligned}$	$\stackrel{3}{\operatorname{MSE}\left(r_{H}\right)}$	$\begin{aligned} & \text { Guess } 4^{\text {d }} \\ & \operatorname{MSE}(\mathrm{r} *) \end{aligned}$	$\stackrel{4}{\operatorname{MSE}\left(r_{H}\right)}$
H	2	EXACT	64.47	158.1	92.52	158.1	91.61	158.1
	4	527	22.70	34.63	35.75	41.05	32.27	37.90
	8	263	8.452	9.104	15.35	15.41	12.41	12.51
	16	131	3.631	3.669	6.107	6.102	5.352	5.352
	32	65	1.707	1.708	2.469	2.469	2.530	2.530
	64	32	. 8445	. 8441	1.093	1.093	1.328	1.328
	128	16	. 4192	. 4190	. 5072	. 5072	. 7078	. 7078

$a_{\text {Guess 1: }} \quad \varphi(x)=400+200 \mathrm{x} .{ }^{\mathrm{b}}$ Guess 2: $\quad \varphi(\mathrm{x})=608-104 \mathrm{x}+13 \mathrm{x}^{2} . \quad{ }^{c}$ Guess 3: $\quad \varphi(\mathrm{x})=220 \mathrm{x}^{1.3}+.001$. $d_{\text {Guess 4 }}: \quad(x)=200 x^{0.9}+.001$.

Population H does not have as large a variation in the function φ as does population G, so that the improvements, if any, are smaller. Except for r^{*} for $n=2,4$, reductions in MSE for r^{*} and r_{H}, when compared to r_{G}, do not exceed 25 percent except for $n \geq 64$ (as compared with $n \geq 8$ for population G). Guess 2 is a marginal improvement over r_{G} except for $\mathrm{n} \geq 64$. Except for r^{*} ($\mathrm{n} \leq 8$), guess 1 (for both r^{*} and r_{H}) is about as efficient as r_{G}. Guesses 3 and 4 are almost always less efficient than r_{C} or r_{G}. Again, guess 3 is better than 4 for large n, and worse for small $n .{ }^{2}$

For both populations G and H, there seems to be a turning point: for some critical n, say \hat{n}, the a priori knowledge (or a suitable guess for it) really makes a difference - for $n \geq \hat{n}$, reductions in MSE are quite sizable. All four guesses yield improvements over r_{C} (as opposed to r_{G}) for population G, and also (for most n) for population H.
7. Final Comments

The relative efficiency of r^{*} and r_{H} over r_{C} and r_{G} depends on the shape of both the distribution of x and of the function $\varphi(x)$, as well as on the validity of the assumption $E(y \mid x)=\alpha+\beta x$. A low coefficient of variation of x (as in population A), or a linear function $C D(x)$ (as in population F) results in little reduction in MSE; one may as well use r_{C} or r_{G}. Furthermore, a poor guess of $C(x)$ may result in an increase in MSE. The examples presented, however, show that significant gains in precision are sometimes possible, even when or (x) is guessed. It is felt, though not tested, that $r *$ and r_{H} perform well when the linearity of $E(y \mid x)$ is only approximately true.

The applicability of this theory is toward recurring surveys and toward surveys with a census base for determining guesses of m and φ. The
theory presented may be extended to the errors-in-variable context, and is more clearly generalizable to stratified sampling (both stratum-bystratum and over-all-strata estimators) and to a p-dimensional concomitant vector ($p>1$).

Linear superpopulation models are hardly new. R. M. Royall (e.g., in [8]) has advocated use of estimators and sample designs which minimize something akin to C.a.p. MSE. Two of the many other papers which treat this subject are by Cassel, Sämdal, and Wretman [1] and by Scott and Smith [9]. Finally, A. A. Hasel presented r_{H} in 1942!

The major problem is, of course, the determination of α and V - or of V alone (if (8) and r_{H} are used). Many interpretations of m and V are possible - both sampling and nonsampling error may be included. More testing of the sensitivity of r^{*} and r_{H} to K is necessary; alternative K^{\prime} s need be examined. Naive assumptions such as $V=\sigma^{2} I$ or $\varphi(x)=d x$ will often result in classical estimators, which may suffice if no other a priori information is available. However, it is believed that in a recurring survey or special survey with a data base in a census, it is possible to obtain practical guesses for α and V.
${ }^{1}$ The development here can be shown to be equivalent to that in Royall and Herson ([8], 881-3), except that they deal with totals rather than ratios and, hence, are restricted to a finite population. Instead of using a sample indicator function $u(s)$ which is zero for all nonsample elements, ${ }^{\text {they }}$ make use of the nonsample moments $(j=0,1, \ldots)\left(\sum x_{k}^{j}\right) k \neq s$. They refer to estimators chosen to be unbiased under a mode 1ξ as
" ξ-unbiased." They compare $\widehat{T}[0,1: x]$ and $\hat{T}[1,1: x]$ under the model $\xi(1,1: x)$, analogous to the comparison of r^{*} and r_{H} as shown here. In general, however, they are concerned more with sample design than with estimation. Moreover, they do not exhibit their estimators in such a way to show the importance of the matrix V (the conditional variance function $\mathscr{\psi}(x)$.

An estimator which is unbiased under a sample design with function p is called, in the terminology of R. M. Royall [8] and others, "p - unbiased." The alternative ratio estimators of Hartley and Ross ($r_{H R}$) and M. R. Mickey (r_{M}) are p - unbiased when p HR derived from SRS. EStimators which are chosen to be unbiased under a model such as (1), independent of the parameters in $E(y \mid x)$, are called " ξ - unbiased." r_{G} is ξ - unbiased under (1); r_{C} is ξ - unbiased under (1) if $\alpha=0$.
${ }^{2}$ This situation is comparable to that of population C: a "big" x - even if rare - will raise the C.a.p. MSE, more so for a large n than for a small one, since when n is large, a "big" x is more likely to appear in the sample. In this situation the low weighting implied by $r *$ and r_{H} can help immensely. See [11], p. 45.
${ }^{3}$ See [11], pp. 13-15.
${ }^{4}$ See [11], pp. 7-12, and 27-32 for a more detailed discussion of these problems.

REFERENCES

[1] Casse1, C1aes M., Särndal, Car1 E., and Wretman, Jan H., "Some Results on Generalized Difference Estimation and Generalized Regression Estimation for Finite Populations," Biometrika (1976), 63, 3, pp. 615-620.
[2] Hase1, A. A. (1942), "Estimation of Volume in Timber Stands by Strip Sampling," Annals of Mathematical Statistics, Vol. XIII, No. 2 , pp. 179-206.
[3] Hutchison, M. C. (1970), "A Monte Carlo Comparison of Some Ratio Estimators," Biometrika, pp. 313-321.
[4] Rao, J. N. K. (1969), 'Ratio and Regression Estimators," in New Developments in Survey Sampling, eds. N. H. Johnson and H. Smith, pp. 213-234, New York: Wiley.
[5] \qquad (1965). "A note on the estimation of ratios by Quenouille's method," Biometrika, 52, 647-9.
[6] \qquad (1967). "Precision of Mickey's unbiased ratio estimator," Biometrika, 54, 321-4.
[7] Rao, Poduri S. R. S. (January 1977), "Ratio Method of Estimation in Finite Populations," University of Rochester, research paper partially supported by the U. S. Bureau of the Census.
[8] Royall, R. M. and Herson, Jay (1973), "Robust Estimation in Finite Populations I," Journal of the American Statistical Association (68), pp. 880-889.
[9] Scott, Alastair and Smith, T. M. F., "Linear Superpopulation Mode1s in Survey Sampling," (1973), Proceedings of the IASS, Vienna, Austria.
[10] Tepping, B. J. (1968), "Variance Estimation in Complex Surveys," Proceedings of the American Statistical Association, August 2023, 1968.
[11] Tom1in, P. H. (1972), "Ratio Estimation in a New Light," (unpublished paper). Research Center for Measurement Methods, U. S. Bureau of the Census.
[12] Woodruff, R. S. (1971), "Simple Method of Approximating Variance of a Complicated Estimate," Journal of the American Statistical Association, June 1971, pp. 411-414.

[^0]: ${ }^{*} r_{0}$ is not really better than r * on F for samples of size 2 ; it just appears that way because r_{Q} is defined on fewer samples than either r_{C} or r^{*}, and its average MSE over those samples is less than that of r * on its larger set of samples.

