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Introduction 

The initial research leading up to this paper was 
motivated by the desire to view the problems of 
sampling from finite populations from a purely 
Bayesian decision theoretic view point, and thus 
to examine what components of practice could be 
identified explicitly in the model. It is there- 
fore interesting that the theoretical model does 
offer versions of notions of randomization, im- 
putation ,etc. 

Section II: introduces a notion of "compromise", 
which is applied to a collection of conditional 
expected utility structures to yield a composed 
utility structure, which is not necessarily an 
expected utility structure. 

Section III: examines interpretations of the 
abstract Luce-Krantz theory in a statistical 
setting. The pivotal assumption made here is 
that the choice of an experiment is a component 
of the decision. 

The problem of decision making under uncertainty 
has a long and illustrious history, and,generally, 
has come to be cast in the form of an axiomatic 
theory of expected utility. Among variants of 
the theory that are currently available, one of 
the most brilliant is that put forward by L.J. 
Savage in his book "Foundations of Statistics" 
(1954, 1972). As has been usual, for most sig- 
nificant developments throughout the history of 
science, Savage's theory was not developed in a 
vacuum. Indeed he acknowledges and draws on the 
prior ideas of Ramsey (1931), de Finetti (1937), 
and von Neumann and Morgenstern (1947). A meas- 
ure of Savage's accomplishment is that his system 
stood as the most general formulation of the ex- 
pected utility hypothesis for nearly fifteen years 
and has yet to be fully superceded. As Savage 
himself was well aware, his system, notwithstan- 
ding its generality, suffers certain structural 
limitations : 

A. The axioms of the system force the "states of 
the world" to have representation as an 
infinite set. 

B. The system presumes that any logically 
possible decision is available. 

C. The system does not reflect the realistic 
possibility that the choice of a decision, 
prior to realizing its consequences, might 
cause the probability distribution over "the 
states of the world" to be changed. 

All three limitations strain intuition, though A 
and B have the flavour of mathematical idealiza- 
tion, and may not seem as disconcerting as C. 

In 1971, Luce and Krantz, following earlier work 
by Fishburn (1964) and Pfanzagl (1967, 1968), 
developed a theory of conditional expected utili- 
ty, which in its most general form more or less 
removes all of the constraints A through C, for a 
price. A complete discussion of this theory and 
some comparisons with some other theories may be 
found in Chapter Eight of "Foundations of Measure- 
ment" by Luce, Krantz, Suppes,and Tversky (1971). 

The purpose of the present paper is to take the 
Luce-Krantz theory in its most abstract form and 
entertain some interpretations, an interpretation 
amounting to a possible model for conditional sta- 
tistical decision theory. 

The main body of the paper is organized into sec- 
tions as follows: 

Section I: develops notation and introduces a 
version of the Luce-Krantz theory in its most 
general form. 

I. A formulation of the Abstract Luce-Krsntz 
Theory 

This section presents the abstract Luce-Krantz 
model for decision making in its most summary 
form; for further details see Krantz, Luce, Suppes, 
and Tversky (1971). 

Following most models for qualitative probability, 
the primitives are three: A measurable space 
(x,E), the elements of E having the obvious inter- 
pretation as events. A sub-family N of E, those 
that are a priori perceived as highly unlikely. 
A set C, which in most interpretations is the set 
of consequences. 

Based on the sets E and C are constructed func- 
tions, called conditional decision% as follows: 
For AeE, any function 

fA: A÷C 

is a decision conditional on A, which to each x in 
A assigns a consequence, f.(x), from C but, for x 
not in A, remains undefined. A 

If A and B are disjoint events and if f and gR 
are two conditional decisions, then f Ug A 
decision conditional on A~B defined {y B is th~ 

(fADgB) (x) = fA (x) if x e A 

= gB (x) if x e B . 

If A and B are two events such that ACB, and if 
fA and gR are two conditional decisions then fA 
Is said To be the restriction of gB to A if 

fA (x) = gB (x) for x e A . 

If A is an event, conditional decision fA is said 
to be conditionally constant if there is a c e C 
such that 

fA (x) = c for x e A . 

A constant decision conditional on A is often 
denoted c A . 

Given D is a set of conditional decisions, we 
assume it is equipped with a weak order (a tran- 
sitive, connected binary relation) denoted by k~ 
f~g will have interpretation, g is not preferred 
to f. When both fyg and gkf, we will say that f 
and g are equally preferred, and denote this cir- 
cumstance by f~g. We wish to calibrate the nume- 
rical representation in an intrinsic fashion, 
using a device called a standard sequence, which 
may be defined as follows: Take AeE-N and let N 
be a sequence of consecutive integers. A set of 
decisions {f~: ieN, fi e D} is a standard sequen- 
ce if for some BeE-N,AAOB = @, and g~, g~eD with 
0 1 gB~gB, then for all i. i+l e N 

gg • fA~gB 
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A set of decisions {ft: teT, fteD} is said to be 
strictly bounded, if there exist two decisions g, 
heD such that g_~ft~h for all teT. We now have 
enough notation to give expression to the main de- 
finition and representation theorem. 

Definition 1 

Suppose E is an algebra of subsets of a set X, N 
is a subset of E, C is a set, D is a set of func- 
tions whose domains are elements of E and ranges 
are subsets of C, and ~ is a binary relation on D. 
Then (x, E, N, C, D,~) is a conditional decision struc- 
ture if and only if for all A, BeE-N, R, s~E, and 

• • . 

all f A, f~, fAo~, gB'.gB' h~, ~ e D where ieN, 
the ~o±±owing n~ne axioms are satisfied. 

i. Closure: 
(i) If A0B = ~, then fAUgB eD. 

(ii) If BCA, the restriction of fA to B is 
in D. 

(iii) For every ceC, c X is in D. 

2. Weak Order: ~ is a weak ordering of ~. 

3. Union indifference: If A~B = ~ and fA~gB , 

then fAt) gB~fA . 

4. Independence: If AOB = ~, then fA~f AI 2 iff 

f~U gB ~f~UgB o 

5. Compatibility: If {f~:- isN} and {hi: i~N} are 
two standard sequence-g such that, fBr some j, 
j+l s N, fJA~hJ and f~±~h~ +I, then for all 

i~N fi. ~h~i 
~ JLJ ~ JLJ 

6. Archimedean: Any strictly bounded standard 
sequence is finite. 

7. Nullity : 
(i) If RsN and SgR then s~N o 
(ii) R~N iff, for all fAuR~D and AOR=~ 

fAOR~fA , where fA is the restriction of 

fAUR to A 

8. Non-triviality : 
(i) E-N has at least three pairwise dis- 

joint elements o 
(ii) D/~ has at least two distinct equiva- 

lence classes 

9. Restricted Solvability: 
(i) If A and gB are given, then there exists 

hA~ such that hA~gB, 

(ii) If A~B=~ and N~UgB~fA,JB >h~ gB' then 

there exists hAeD such that fAuB~h~ gB" 

Theorem 1 

Suppose that (x,E,N,C,D,>.) is a conditional deci- 
sion structure. Then there exist real-valued func- 
tions u on D and P on E such that (x,E,P) is a 
finitely additive probability space, and for all 

A, B~E-N, R~E, fA' gB ~D 

(i) ReN iff P(R) = 0 

(ii) fAkg B iff u(f A) > u(g B) 

(iii) If A~B = ~, then 

u(fAUgB)=u(f A) P(AIA~B) + u(gB)P(BIAVB). 

Moreover, P is unique, and u is unique up to a 
positive linear transformation. [Note: (PAIAtB)= 
P (A)/P (A~B) ] 

Note that the foregoing theorem assigns utility 
values only to decisions, and not to consequences. 

To determine the sense in which an assignment of 
utilities to consequences seems to happen, recall 
that for every ceC, cxeD. Thus by the closure 

axiom, for every ceC and every AcE, CAeD but it 

may nonetheless be true that there are A,BeE such 
that CAYC B. Now for each ceC define v(c,A) = 

u(c A) P(A) 

By theorem 1 (iii) for A~B=~ v(c,A,~B)=v(c,A) + 
v(c,B) so that for each ceC v(c, .) is a finitely 
additive set function on E such that v(c,A)=O 
whenever P(A)=O. If P were countably additive, 
then the usual Radon-Nikodym Theorem would guar- 
antee the existence for each ceC of a function 
on X, say v(c,x) such that v(c,A)=/A(x)v(c,x)e(dx) 
so that U(CA)=(i/ [P (A )])jA(x)v(c,x)P(dx) 
where A(x)=i if xeA and-0 otherwise. 

It is interesting that this integral represent~a - 
tion can be extended beyond constant decisions in 
the usual integration theoretic manner. First, 
to gamble, where we define a gamble to be a con- 
ditional decision fA whose range is a finite set, 
and is of the form 

fA =~{c (i): i=l .... ,n} 
A i 

which means that 
n 

n c(i))p I u A.) 
u(f A) = ~ u( A. (Ai 

i=l i i= 1 1 
n (i) n 

= i=iE v(c , Ai)/ iEiP(Ai).= 

n (i) n 
= E IAi(x ) v(c x)P(dx)/ Y~ fAi(x)P(dx) 

i=l 
i=l 

= fv(fA(x),x) P(dx UA i) ° 

Thus the utility of a gamble has an integral 
representation in terms of the functions v(c, "). 
This representation can be extended to more gen- 
eral decisions under a suitable definition of ap- 
proximation, to yield for each f.~D the integral 
representation u(f A) = fv(fA(x),Ax)P(dxlA). 

II. Combinin$ Opinions 

The previous section outlines a reasonably gen- 
eral decision structure for a single decision 
maker. However, there are numerous occasions 
when a choice must satisfy more than one decision 
maker. In this section, we explore one procedure 
by which the preferences of a group may be amal- 
gamated yielding a composed decision structure. 
The group of potential participants in the deci- 
sion process will be represented by a set £, with 
individuals denoted ~. At any implementation of 
a decision process the group' of actual partici- 
pants may be a subset ~ of E, and the class of 
such groups form an algebra A. The basic con- 
straints that will be observed are that each 
element ~ of A sees essentially the same decision 
problem in the sense that the basic measurable 
space (x,E), the consequence space C, and the de- 
cision space D will be the same for all ~sA. 
}iowever, each ~ will perceive its own set of null 
events N(~) and impose a weak order ~ (~) on D. 
Thus for each ~ in A we define a decision struc- 
ture to be 

(x,E,N(~), C,D, ~ (~)) 

Notwithstanding the notational similarity, we do 
not assume that this decision structure satisfies 
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the axioms of Definition 1 of section I, but do 
assume that >_(s) is numerically representable by 
a utility function u(Is) for every seA. Given 
that the indexed set of utility functions is 
available, a natural question is how might one de- 
fine u( IsOB) so that it represents a "compromise" 
between s and ~ and is computable on the basis of 
u(Is) and u(IB). This we accomplish by intro- 
ducing the notion of composable: A family 
{u( Is): seA} of utility functions is said to be 
composable, if for each fASP and whenever s,B in 
A are such that s~B=~ 

u(fAlsU8) = F[U(fAls), u(fAIB), z(s), ~(8)] 

where F is a positive-real-valued function defined 
on R 4, and may vary with f.eD, z is a positive- 

A 
real-valued function on A, and may also vary with 
fASP, satisfying: 

i. F[U(PAI~), u(fAIB), 7(s), ~(~)] 

= F[U(fAI8) , u(fAls) , z(~), z(s)]. 

2. F[U(fAI~), F[u(fAlS), u(fAIy), 

~(~) ,~(y)], ~(s), ~(Buy)]. 

= F[F[u(f A s), u(fAIB) , ~(s), z(B)], 

u(fA]y) , 7(sUB), 7(7)]. 

3. If u(fAls) < u(fAlB) then 

u(fAls ) < F[U(fAIs), u(fAIB) , z(s), z(8)] 

< u(fAl B). 

4. If u(fAls) < u(fAIB) and ~(s) = 7(8), then 

F[U(fAls) , u(fAIy) , z(s), z(y)] 

< F[u(fAIB), u(fAIY), ~(B), ~(Y)]. 

5. If u(fAls) = u(fAIB) < u(fAIy) and 

~(s) < ~(8) then 

F[U(fAls) , u(fAl7) , 7(s), ~(~)] 

> F[U(fAlf.) , u(fAIY), z(8), z(Y)]. 

6. F[U(fAls) , u(fAIB) , ~(s), ~(B)] 

= F[U(fAIs), u(fAIB) , k~(s), kz(B)] whenever 

k>0. 

Note that 4,5, and 6 are a detailing of the "ma- 
jority principle" embodied in our concept of com- 
promise. Conditions 1-6 almost characterise what 
are generally called quasi-linear weighted means. 
If we assume that ~ is an additive set function, 
then 1-6 are equivalent to the six conditions in 
Aczel (1966) that characterise the notion of a 
quasi-linear mean, where it is also shown that 

F[u(falS), u(fAIB) , ~(s), ~(B)] 

= ,-i [,[u(fAi~) ] ~(s) + 7(B) 

+ +[u(fAIB)] 7(s) + ~(B) ]" 

with ~ a positive-real-valued strictly increasing 
continuous function on Ro, which in accordance -F 
with the foregoing may depend on f.. When neces- 

A 
sary, to emphasize the potential dependence, we 

will often write 

@[u(fAls)] as @[u(fAls) , fA ]. 

This means that, whenever sOB=~ and for every 
fAsP. 

@[u(fAIsL'B), fA ] ~(st3Blf A) = 

= @[u(f AIs), fA ] 7(slf A) 

+ @[u(fAIB), fA ] ~(Blf A) 

Thus for each fAeD 

T( If A) = @[u(fA! ), fA ] 7(IfA) 

is an additive set function on A such that 

T(slf A) = 0 whenever 7(slf A) = 0. 

Thus the notion of a compromise is effected by the 
choice of two functions #:R+ x ~ ÷ R+, strictly 
increasing in the first argument, and 
7:n x D ÷ R+, additive in the first argument. 

As indicated earlier the composite utility func- 
tions do not lend themselves to the expected uti- 
lity representation without some additional assump- 
tions. 

Each of the functions, for each seA 

u~ (fAIs) = u(fAls) 

u~ (fAIs) = @[u(fAls) , fA ] 

u~ (fAls) = @[u(fAls) , fA ] ~(~IfA) 
define weak order on P, denoted ~(s,l), >_(s,2), 
k(s,3) respectively. Thus if we assume that for 
each seA, the weak order ~(s,j) (j=l,2 or 3) is a 
conditional decision structure in the sense of Sec- 
tion I, we get, for each seA, positive real valued 
functions u_~ (Is) and Po(Is) on P and E, such 

J 
that (X,E,P.(Is)) is a ~initely additive probabi- 
lity space,Jand for every A, Be E-N(c~), R~E, 
fA, gB~P 

(i) ReN(s) iff Pj(RIs) = 0 

*(fAls) > u*(gBIs) (ii) fA~(Slj)gB iff uj _ j 

(iii) If AOB = ~ then 

u*(fAUgBls) = u*(fAls) Pj(AIAUB s) 
3 ] ' 

*(gB Is) Pj(BIAUB's)" +uj 

The case j=3 is the most general, since j=2 is a 
special case under the assumption ~(slf A) --- ~(s), 
which causes the weak-orders ~-(s,3) and Z(s,2) to 
become indistinguishable. The case j=l is a fur- 
ther special case under the additional assumption 
that ~ is independent of its second argument, cau- 
sing the three weak-orders to become indistinguish- 
able. In what follows we shall generally work 
with the case j=2 (i.e.,7 independent of fA ). 

IIL Some Interpretations 

In this section we transcribe sections I and II 
into more familiar statistical terms: Denote the 
space of "ideal" observations by the measurable 
space (Y,F), the parameter space by (@,B), the 
space of "estimates" by (K,H) and, recognizing the 
possible occurrence of "errors" in observation, the 
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space of observations with error by (~,G). For 
any measurable space (X,A), denote the convex set 
of finitely additive probabilities on A by M(X,A). 

A conditional experiment or randomization over Y 
is defined as a map, PA' with domain A, an element 
of B, and range a subset of M(Y,F), subject to the 
proviso that for each FEF, the real-valued map, 

PA (F) ("), is measurable in e in the usual sense 
(i.e. ,is weakly measurable). An I-estimator is an 
(F,H) - measurable map on Y into K, an E-estimator 
is a (G,H) - measurable map on Z into K. 

In an error-free setting, a typical decision is an 
ordered pair (P, f), P a randomization over Y, f an 
I-estimator. Associated with each (P, f) is a ran- 
domization Q(=fP) over K, the image of P under f, 
and for most practical purposes (f,P) may be con- 
founded with Q. Thus, recalling section I, iden- 
tify (x,E,N) with (@,B,N*), N*CB, C with M(K,~(), 
D with a set of conditional randomizations over K, 
and assume 

(e, B, N*, M(K, H), D,~) 
is a conditional decision structure in the sense 
of section I. Then following the reasoning con- 
tained there, under suitable regularity conditions, 
we are assured of the existence of a finitely ad- 
diti.ve probability p on B, and a positive-real- 
valued map v on Dx@ such that 

u(Q A) = / V(QA(e),e) ~(delA). 
Since, in general, for each 8E@, the map V(QA(e),e) 
on M(K,H) is non-linear, u is a non-linear func- 
tional over randomizations. Some conditions under 
which linearity obtains are discussed in Fishburn 
(1970), and lead to the following simplification 

U(QA) = / V(QA(e) ,e) p(de IA) 

= f w(x,O) QA(dXle) p(deIA) 

= f w(x,e) T(dx,deiKxA) = u*(~) 

which is a linear functional on M(Kx@, HxB). Thus 
an optimal solution need only be sought among the 
extreme points of the convex set of probabilities 
satisfying the following constraints on margins 
and disintegrations : 

T(KxB IKxA) = p(BIA) , and 
T(dx,dOIKxA ) = QA(dXl8) P(deIA) 

where, according to Fishburn (1970), the availa- 
ble randomizations, QA' should be convex set. If 
we further assume tha~- QA is derived from a single 
predetermined, PA' then ~he choice reduces to that 
of an I-estimator, and is accomplished by the 
usual Bayes inversion: 

U(QA) = Y w(x,e), QA(dXle) p(delA) 

= f w(f(y),e) PA(dyle) p(de[A) 

= f w(f(y)~e) #(dely,A) P(dy) . 

Now turning to the more realistic setting, where 
we assume that observations are not error-free, 
and so are elements of Z. In this circumstance 
the decision process can proceed in one of two 
ways. The first alternative would be to choose a 
strategy as if no "error" were expected,and upon 
receipt of the actual outcome z (i.e. ,signal plus 
noise'), guess at which y should have obtained 
(i.e.,guess at the signal.') and then apply the 
chosen I-estimator f to the guessed y. 

This procedure is analogous to what has come to 
be known as "imputation". The second alternative 
is more direct in defining a decision to be an 
ordered pair (P,g), where P, as before, is a ran- 
domization over Y, and g is an E-estimator. Thus 
(P,g) is a map with domain AxB, AEB, and range in 
M(Y,F)xK. Identify (x,E,N), with (Ox~,BeG,N*), 
N'C-BeG, C with M(Y,F)xK, # with a set of ordered 
pairs as defined above and assume 

(OxB, BeG, N,, ~.~'(y,J)xK, D,~ 

is a conditional decision structure in the sense 
of section I. As before, under suitable regula- 
rity conditions, we are assured of a finitely ad- 
ditive probability p on BsG, and a positive-real- 
valued map v on DxKx@xB, such that 

U(PA, g ) = f V(PA(e),g(z),e,z) p(de,dzlAxB) 

= f V(PA(O),g(z),e,z) v(dzlO)p(deIA) 

Thus, for each e, we have two probability func- 
tions, P(le)on (Y,F), and ~(1O) on (B,G). P is 
well-defined as one of the available randomiza- 
tions, but what is v? In one sense, v represents 
the "irreducible" noise in the "decision system", 
which can be decomposed according to the randomi- 
zation P chosen. Also P and v are aspects of the 
partially controllable relationship between 
"ideal" and "real" observations. A particularly 
simple example of this connection is that of being 
the marginal randomizations of a joint randomiza- 
tion over Yx~. The "design" of an experiment P 
would then amount to the choice of a randomization 
over yxB from among those having marginal rando- 
mization over ~ fixed at v, and marginal randomi- 
zation over Y belonging to the set of available 
randomizations over Y. Under appropriate regular- 
ity assumptions, this choice can be exercised 
through the selection of a disintegration P(dyle,z ) 
of P(dy[@) with respect to v(dzle), so that 

P(dyle,z) v(dzle)= v(dzly,e ) P(dyle) 

where v(dzly,e) represents the "noise" in the 
"decision system" under experimental conditions P. 

Under certain circumstances, z may be perceived as 
being approximately sufficient for e in the sense 
that e(dyle,z) = P(dylz) , under an appropriate 
concept of "=". Thus any "guess" of y, using 
P(dyle,z) would depend primarily on z and very 
little on e. Thus the choice of P(dyle) and an 
E-estimator g can be viewed as interchangeable 
with a choice of P(dylz) and an I-estimator f, 
with the foregoing outlining the circumstances 
under which they are risk-equivalent. A particu- 
larly simple example, assuming all symbols well- 
defined, is given by the equation 

/ f(y) P(dy!z)- g(z) 

This is also a particularly simple example of pos- 
sible relationships between I- and E- estimators. 
In general then, the foregoing interpretations of 
the general decision model confirms the intuitive 
view of imputation as a device that provides a 
link between I- and E- estimation, and go somewhat 
further in indicating when imputation is a valid 
tactic contributing to the implementation of an 
estimation strategy. 

The foregoing formulation of the abstract model 
seems to encompass both the general statistic mo- 
del as well as a general (usual?) model for finite 
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population surveys. The remainder of this section 

is devoted to examining the latter assertion. 

Denote the finite population of identifiable units 

by 
u = {1,2 ...... N}. 

For simplicity, assume each unit in u carries an 
R-valued characteristic of interest, so the popu- 
lation of characteristics can be represented as 

an array 

@ = (el, 8 2 ...... O N) in R N. 

Even though, in principle, a sample is any subset 
of u, we will adopt a somewhat more convention- 
bound representation, by representing a sample as 
a non-empty "ordered" subset of e in the follow- 

ing sense. 

s = (i l,i 2 .... i n ) i I < i 2 <...< i ' ' ' n 

with the set of all samples denoted by ~. It is 
easily seen that there is a one-to-one correspon- 
dence between the set of "unordered" samples and 
the set of "ordered" samples. Each s in ~ can be 
viewed as a "projection" from R N onto R n(s ), 
where n(s) is the size of the sample s. The or- 
dered set representation preserves identifiabili- 
ty by specifying exactly which subspace of R N the 

projection is onto. The range s(R N) can be sym- 

bolically represented {s}xR N, which has typical 
element (s,@). We can now define the ideal-obser- 
vation space as 

Y = U{ {s} x RN: s¢$ } 

so that each s¢$ is a map on RN into Y. It is 
particularly useful to examine the dual view; na- 
mely that each esRN is a map on $ unto Y. Recall- 
ing that a sample design is a probability on the 
discrete space $, usually denoted p, each @sR N 
carried p onto a discrete probability on Y, and 

the correspondence 

@ ÷ @(p) = P(@) 

R N d e f i n e s  a map on i n t o  M(Y,F) ,  whose r a n g e  i s  a 
s u b s e t  of  d i s c r e t e  p r o b a b i l i t i e s .  So t h a t  P i s  
n o t h i n g  more  t h a n  a r a n d o m i z a t i o n  i n  t h e  s e n s e  
d e f i n e d  a b o v e .  In  t h i s  i d e a l  s e t t i n g ,  t h e  u s u a l  
f i n i t e  p o p u l a t i o n  e s t i m a t o r  

e : Y÷K 

corresponds precisely to the notion of an 
1-estimator, which carries the randomization P 
over Y onto a randomization Q over K. In the 
present context, Q is no more than the trace of p, 
under the composite map e.e as @ varies over R N. 

The correspondence with the error-free general 
statistical model is now obvious and 

u(Q) = f v (Q(@) ,O)  v ( d e )  

= d v ( e ( O ( p ) ) , @ )  ~(d@) 

= d v * ( p , e , @ )  v ( d e )  = u * ( p , e )  

w h e r e  v* i s ,  i n  g e n e r a l  n o n - l i n e a r  i n  p.  (The 
l i n e a r  c a s e  has  a l r e a d y  s e e n  s u b s t a n t i a l  a t t e n -  
t i o n  i n  t h e  l i t e r a t u r e . )  

To accommodate the more realistic observations 
with error model requires a real-observation space 
which we define as 

:U{ {s} x QN : s~} 

where Q = RUM, M a set of special symbols to ac- 
commodate unanticipated "observations" (e.g. va- 
riety of non-response, etc.) A typical element 
of ~ will be denoted (s,9*). Now each e*sQ N can 
be viewed as a map on ~ into ~, carrying the de- 
sign p onto a discrete probability on ~, giving 
rise to randomization P* over Z. Since the actual 
observation is an element of ~, the appropriate 
type of estimator is an E-estimator 

d" ~ ÷ K  

wbich, in turn carries P* onto a randomization Q* 
over K. Thus a decision is an ordered pair (P,Q*), 
which is a map on RNx~ N into M(Y,F) x M(K,H), and 
employing the now familiar reasoning based on the 
results of section I, with the usual caveats, we 
get 

u(P,Q*) = / v(P(O),Q*(9*), @, 9") ~(dg,dg*) 

= f v*(p,d,O,@*) p(de,d9*) 

= u*(p,d) 

where, again, v* is not necessarily linear in p. 
The linear case has seen some sporadic discussion 
in the literature, usually under the guise of im- 
putation strategies. 

In general, the finite population survey model has 
more structure than the general statistical model 
(since it is a special case~), and this can be 
taken advantage of in the observations with error 
case to yield a result which looks different (and 
simplefO than that obtained in the general case. 

The situation for more than one decision maker is 
not any more complicated, and each of the foregoing 

interpretations can be easily cast thus. Here we 
content ourselves with casting the last of our 
interpretations thus: 

Recalling the notation developed in Section II, 
each $~_~ is a decision maker, and we assume, for 
each 

u(P,Q*I~ ) = / v*(p,d,O,O*l~) p(de,de*l~) 

= u*(p,d I ~ ) 

i.e.,each ~ has a distinctly personal utility and 
prior. Further we suppose the compromise must be 
effected for a "committee" ~s£, and following a 
very specialized reasoning based on Section II, 
define 

¢ [u(P,Q* Io.) ] 

= f ~[v*(p,d,@,@*l~)] p(dO,de*i~) ~(d~[~) 

= / ¢[v*(p,d,9,9*l~)] ~(de,de*1~) 
= ~ [ u * ( p , d  ]~) ] 

whe re  ¢ i s  a p o s i t i v e - r e a l - v a l u e d  s t r i c t l y  i n -  
c r e a s i n g  c o n t i n u o u s  f u n c t i o n  on t h e  p o s i t i v e  r e a l s  
and T i s  a f i n i t e l y  a d d i t i v e  p r o b a b i l i t y  on ( E , A ) .  
Thus v * (  I~) and V ( l a )  r e p r e s e n t  t h e  compromise  
u t i l i t y  and p r i o r  r e s p e c t i v e l y ,  f o r  t h e  c o m m i t t e e "  
~. Now, even i f  ~*(  ]~) i s  l i n e a r  i n  p f o r  each  
~¢~, v*( I~), and thus u*( I~), will, in general, 
be fairly spectacularly non-linear in p. The last 
few results can be viewed as abstract analogues of 
the strategic considerations discussed in Patrick 
(1973). 

Conclusions 

The foregoing account suggests a number of things: 
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First, that imputation, as it is commonly under- 
stood, is not more general or robust than conven- 
tional estimation. And, under appropriate circum- 
stancesjimputation can be made to serve as a use- 
ful implementational device linking the presuma- 
bly more complicated observations-with-error si- 
tuations with the presumably more simple obser- 
vations-without-error situations. Second, when 
design is a part of the decision strategy, life 
can get very complicated because of inherent non- 
linearities, which, in the context of finite popu- 
lation survey models, means that purposive sam- 
pling should be the exception rather than the 
rule. Does this last mean randomization has a 
Bayes justification? Yes, with the qualification 
that the Fisherian averaging-out-view does not 
seem to have found a Bayes expression'. 
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