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Survey data may be viewed as a matrix in 
which columns correspond to respondents and rows 
to specific survey items. Missing values may 
be imputed from functions of other items in the 
same column (a class that includes most 
regression methods), or in the same row (a 
class that simply ignores missing 
values as well as hot deck procedures), or in 
both columns and rows. Hot deck procedures 
have been widely used for over 25 years but 
their properties are almost unexplored. This 
paper compares the first two moments of 
estimated row means when missing values are a) 
ignored, or b) imputed by hot deck procedures. 
Under usual and/or reasonable assumptions both 
methods are unbiased. Their relative variances 
depend on the correlation structure of the data 
within rows and on the positions of the missing 
values. Exact formulas ~gd.$imiting cases will 
be presented for Pij = p I l - ] |  and/or Pij = 0 
unless l i-jl 5 1. 

(Note: Tables, figures, end appendices are 
available from the authors. ) 

Introduction 

Consider a random sample (simple random or 
otherwise) of size n, drawn from an infinite r- 
variate population. The data may be considered 
to form an rxn matrix of observations. Assume 
that some variables ( say 1, 2, . .. ,q) are 
always observed and are used to stratify the 
population in any suitable way. We deal only 
with sample items within strata, so these items 
play no further role in the analysis here. For 
the other variates, q+l, q+2,... ,r, some 
observations may be missing, while others are 
identified as outliers or are otherwise not 
available for analysis. The problem is to 
estimate the population mean, Z, for any one of 
these variates or, equivalently, to estimate 
n Z = T, where n is the sample size. 

For specificity, assume that variate t is 
missing for m of the n sample elements. 
Several different approaches have been 
developed to deal with the problems posed by 
the missing observations. These include: 

i. Equal-weights models, in which the weight 
initially assigned to each missing 
variate is redistributed equally over the 
sample elements in which that variate was 
actually observed. This corresponds in 
important respects to a procedure of 
ignoring missing values and defining the 
sample size for a specific variate as 
equal to the number of times that variate 
was observed. 

2. Regression models, in which missing 
values for any sample element are 
estimated by regression methods from the 

vamiates that were observed for thai 
element; the estimated value is then used 
as if it had been observed, with 
appropmiate adjustments to the Vamiance. 
In mough terms, this means that one 
estimates missing values in any column of 
the rxn data matrix from other values in 
that column. 

3. Hot-deck models, in which missing 
variates for any sample element are 
estimated by a linear combination of the 
values for other sample elements for 
which that variate was observed; this is 
a procedure for estimating missing values 
in any row of the rxn data matrix from 
other values in that row. This approach 
in general is not suitable for simple 
random samples, since it is critically 
dependent on the ordering of the sample 
vectors (the columns of the data 
matrix). In the hot-deck model 
considered in this paper, a missing 
variate is considered to equal the 
immediately preceding value actually 
observed for that variate; to accomodate 
missing values in the first sample vector 
a complete initial (cold-deck) vector is 
established by some means before the data 
are processed. 

4. An extension of the models in which missing 
values are estimated by using the complete 
data matrix (both rows and columns). There 
seems to have been no specific application 
of such methods to survey data though much 
has been done in the field of experimental 
design. 

Each of the first three approaches has its 
own advantages and disadvantages, of which we 
give only a few examples. Equal-weights models 
are conceptually and eomputationally simple but 
generally require the assumption that missing 
values area random subset of all values. They 
may lead to serious loss of data in cross- 
tabulations and they may be much less efficient 
than other models. Regression models seem 
especially appropriate when variates likely to 
be missing are closely correlated with other 
items more likely to be present in the same 
sample vector. However, they can become 
complicated and unwieldly if the set of missing 
variates differs widely from one vector to 
another. Hot-deck models seem to have some 
advantages when the successive sample elements 
are correlated. This might be as a result of 
the sequence in which data are submitted (a 
block of data from rural residents, then a 
block from city residents, etc. ), or a serial 
correlation could be deliberately induced in 
the data by appropriate sorting of the sample 
vectors prior to processing. 
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The equal-weights model will be compared with 
a version of the hot-deck model used in the 
Current Population Survey ( CPS ), a large 
probability survey conducted monthly by the 
Bureau of the Census. 

It is convenient to assume that the data 
matrix is complete, but is paired with another 
rxn matrix of elements that are zero or one, 
depending on whether the corresponding item in 
the data matrix was missing or observed. This 
matrix is called the window matrix. From here 
we consider only one vector (row) at a time 
from the data matrix, designated x, and the 
corresponding vector from the window matrix, 
designated w. Assume that a cold-deck has 
been established, so that x and w each have n+l 
elements, labeled O, i, 2,..., n. 

It is now assumed that x and w are 
independent; this implies that whether an item 
is missing is independent of its value. This 
is a strong assumption with respect to many 
situations in which missing values must be 
estimated. However, we do not yet assume 
independence of the elements within x and w. 
The value of the population mean, ~, is now 
estimated by a linear combination of the 
elements of x, n~ = i$0 c ix i where each c i is a 
function of w with c i = 0 when w i = 0 and 

c i = n. The values c0,cl, ..., c n now form a 
i=0 
third random (n+l) vector c(w) for each row of 
the data matrix. 

The problem may be seen as that of comparing 
two algorithms for constructing c from w. In 
the case of the equal-weights--procedu~-e, w 0 : 
c O = 0 and c i = n/(n-m) for each value 
observed. In the case of the hot -deck 
procedure used in the CPS, c i for each value 
observed in the sample (i=l, 2,...,n) is i plus 
the length (perhaps zero) of the string of 
missing values immediately following element i, 
while c0 is i less than this. For both 
procedures, it is assumed that all x i , 
i=0,... ,n have the same marginal distribution 
with mean ~ and variance o 2. 

It is easily shown that ~ is unbiased under 
any set of weights c compatible with the 
assumptions used here~ Thus it is reasonable 
to compare the two procedures in terms of 
Var(~). These will be designated VarEw(~) and 
VarHD(~) for variances under the equal-weights 
and hot-deck procedures, respectively. 

It can also be easily verified, under the 
as sumpt ions stated, that with any set of 
weights c 

n n 

Var(~) = __i X 7. Cov(c.x., c.x.) 
n2 i:0 j:0 1 1 ] ] 

n n 
1 
n2 Z T E(c.c.)Cov(xix j) • 

i-0 j=0 z ] 

(See Appendix I) 

In some applications Var(~) will be found 
conditional on the observed vector w; i.e. 
conditional on c__, in which case E~cic q) = 
cic j . However, unless otherwise noted, the 

0 

following development is in terms of 
expectations over c. It is assumed that n, the 
sample size, and m, the number of observations 
missing from the sample of initial size n, are 
fixed and known. We now assume also that all 
possible arrangements of the m missing values 
are equally likely, so that p(w i = I) = (n-m)/n 
and for i#j 

n-m n-m-i 
P(w. : w. : i) : -- . 

:z ] n n-i 

Equal-Weights Procedure 

In equal-weights procedures c is constructed 
by the following algorithm: c i = 0 if w i = 0 
and c i = n/(n-m) if w i = 1 for i=l, 2, ..., n. 
We consider three possible functions for 
Cov(x i ,xj ). The first covariance structure is 
that for simple random sampling, in which the 
elements of x are independent and identically 
distributed. Then 

n 

^ = 1 7, E(c2)o 2 : o2/(n-m) 
VarEw(P ) n-~ . l 

l=O 

For the second example, assume that the 
observed values o~ x are correlated, with 
Cov(x i ,x j) = o2pii-~ [ for i#j. We now need, 
for i#j, E~c-c-). Since c:c- is zero unless c i 

~ J - j 
and cj both equal n/(n-m), 

E ( c  c . )  = ( n__n._)2 . p [ c .  : c .  : ( n ) ]  
i ] n-m r :z ] n-m 

n )2 n-m . n-m-i 
- (n----m -~- n-i 

n(n-m-1) 
(n'm) (n-l') " 

Then 

n j-i 

Z Z E(c )Cov(xix ) 
j-2 i=l icj J 

n(n-m-l))o2 n P-P] 
(n-m) (n-i X ( ~ - - )  

j=2 

(n-m)(n-l)n(n-m-l) O2(li_p)(n ~I-P n 
: _ ±_ ) 

so that 

^ = o 2 + (n-m-l) [2o 2p 
VarEw(P) n-m (n-m)(n-l) n ( l ' p )  ] (n -  T--p l - p n )  " 

^ 

One can show t h a t  Var EW (P) i s  s t r i c t l y  
increasing in p over the range p e [-I, I]. 

(See Appendix 2) 
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For the third covariance structure, assume 
that Cov(xi,xj) = po 2 for i#j. In this case 

n 
02 po 2 (n-m-l) 

VarEw(~ < ) n-m n i#j = -- + ---- 7 (n-m)(nii) 

o 2 
: -- [i + (n-m-l)p] . 

n-m 

Hot-deck Procedure:. prpperties O f c__ 

The procedure used to impute missing values 
in the CPS is computationally simple, but its 
properties are almost unexplored (Bailar, 
Bailey, and Corby, §urvey Sampling and 
Measurements, Chapter 12, November 1978). I---n 
this procedure, a "cold-deck" value x 0 is 
established before the data are examined, where 
x 0 is assumed to be an observation from the 
same population as the other elements of x but m 
independent of them. Commonly, x 0 is taken 
from the same stratum of a previous survey. 
The new data are then processed in the sequence 
in which they are submitted, which is generally 
non-random with respect to the values in x. If 
the element x i is observed, it is used both in 
the computations and to replace the value in 
the cold-deck (which is now called a hot-deck). 
If x i is not observed, the value currently in 
the cold-deck (initially) or the hot-deck 
(after the first observed value replaces x 0) is 
used in the computations. 

The effect of this procedure is to use each 
observed value x i a random number of times c i . 
This is clearly not an optimal procedure in the 
case of simple random sampling. However, when 
successive elements of x are positively 
correlated one might expect each missing value 
to be replaced (imputed) by a value closer to 
it than the sample mean. 

It may be helpful to illustrate the 
computation of c in this procedure. Assume 
that n=12 (so that x, w, and c each have 13 
elements) and that observations i, 2, 5, 6, and 
9 are missing. Then 

w = (i, O, O, I, I, O, O, i, i, O, i, i, I) 

c = (2, 0, 0, i, 3, 0, 0, i, 2, 0, i, i, i) 

Since we have assumed that m, the number of 
missing observations, is fixed, and that each 
possible arrangement of them is equally likely 
except that x 0 is always present, we can find 
the marginal and joint probability 
distributions of the elements of c. Note 
that P(c 0 = 0, Cl = 0) = 0 since c O = 0 if and 
only if Xl is observed; i.e. Cl # 0. As an 
example of the derivation of the other 

probabilities consider P(c4 = 3, c i0 = i) 
when n=12 and m=5. The event c4 = 3, Cl0 = 

1 occurs if and only if w4 = i, w5 = 

0, w 6 = 0, w 7 = i, Wl0 = i, and Wll = I. Thus 
we must specify the location of four of the 
observed values and two of the missing values. 

All arrangements of the remaining three 
observed and three missing values are assumed 
to be equally likely, so the required 
probability is (~) / (152). 

In this case the "run" of missing values 
imputed by x 4 was terminated by the observed 
value x The form of the probability 
expression 7 P(c i : k, c i : £) with i<j depends 
on whether the run r4flected in cl is 
terminated by x j or by some preceding value of 
x. Likewise this probability depends on 
whether the run reflected by c j is terminated 
by the end of the sequence of observations or 
by some value actually observed. This 
probability also depends on whether c i = 0, 
cj = 0, or both, and, of course, the 
distribution of co differs from that of ci for 
i#0. Table 1 gives the marginal 
probability distributions P(ci = k) for 
selected values of i and k, while table 2 gives 
the probabilities of P(c i = k, cj = £) for 
selected i, j, k, and £. ConlSinations not 
given in these tables have probability zero. 

It is now a matter of tedious but 
straightforward algebra to derive the following 
results, which hold for m=0, I, 2, ..., n and 
i=l, 2, 3,...,n: 

1 
E(c0) : (n-m+l) 

m(n+m) 
E(c20 ) = (n-re+l) (n-m+9) 

(i-i 
n-m) 

E(c i) : i - in) 

2 
E(c.) : 

n+m+l(n] i 
n-m+l "m" + 2 ( n-m ) (m-n+ i-i 

( i-i . 
)-(2n+l) m-n+i-~ 

(n) 

(See Appendix 3) 

Independent . 0bseryations - Hot-Deck Procedur e 

From these results 

2 
n 2 n -mn+n-i 
Z E(c.l ) = n + 2m (n_m+l)(n_m+2) " 

i=l 

(See Appendix 4) 

Thus, if the elements of x are uncorrelated, 
the variance of ~ averaged o~er all values of c 
is 

2 
2m n -nm+n-i 

VarHD(~)~ = n [i + -6- (n~m+l)(n-m+2) ] " 

It can be shown algebraically that this 
variance is strictly larger than 
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02 m 
-- (I +--) , 
n n-m 

the variance of the equally-weighted mean under 
independence, except for the following trivial 
(or nearly trivial) cases : 

I. when m=O, the variances are equal 

2. when m=n-l, the hot-deck procedure has a 
smaller variance (the extra cold-deck 
value, always available, now has a marked 
effect on the variance even though the 
weights are not optimal), and 

3. when m=n the equally-weighted mean does 
not exist, while the hot-deck mean does 
exist. 

(See Appendix 5) 
^ 

With uncorrelated xi, VarHD(~) is approximately 

0 2 2m 
-- [i +--] 
n n-m 

for large n, whereas 

^ o 2 m___] 

V a r E w ( ~ )  i s  --n [ 1  + n - m  " 

(See Appendix 6) 

Thus, averaged over c for fixed m, each missing 
observation (in the case of independence) 
"costs" about twice as much in increased 

^ 

variance of W when the hot-deck procedure is 
used rather than the equal-weights procedure. 

As noted, these results are conditional on m 
but averaged over all values of the random 
vector c. The value of c will ordinarily be 
observable, and in the case of independent 
observations the variance of ~ is simply 
2 i~ 2 a .Z_ c.. However even under the best of 
• i:0 I 

clrcumstances, with nearly equal spacing of the 
observed and missing observations so that 
all non-zero values of c i (including c 0) 
are [n/(n-m)] or [n/(n-m)] + i, the variance of 
the hot-deck procedure will exceed that of the 
equal-weights procedure except when n/(n-m) is 
an integer. In the worst case, when one value 
of c i equals m+l and n-m-i equal unity, the 
ratio of variances is 

2 
(m+l) + (n-m-l) 

n 2 / ( n-m ) 

m 2 
: i + n[ (n-m-l) . 

Table 3 tabulates for n:lS, m:5, and o2=1 all 
possible values of 7c 2. and Vat (~) conditional 

i D 
on c. The weighted mean of t~ese estimates is 
of course equal to the unconditional mean 
derived above. In this example, Var~n(~n ) was 
always greater than Varrw(~ ) and -sometimes 
by a wide margin• The hig~ values for VarHD(U ) 
in table 3 result from having the missing 
values in runs or clusters, rather than being 
evenly spaced. If significant clustering is 
likely, the hot deck procedure might be 

undesirable, or one might sort the data to 
attain more equal spacing of the missing 
values. Sorting to induce a correlation 
between successive values of x has been 
suggested above; a sorting scheme to attain 
both objectives might be difficult to develop, 
especially if failure to respond (w i = O) is 
correlated with the true but unreported value. 

Serially. Correlate d = Observations , Hot-Deck 
Procedure 

Assessment of the effect of correlations 
among the observations requires E(c ic 7 .. The 
values of E(c 2 ) are given above f~or)i=0, i, 
2,... ,n. The following results are obtained in 
a similar way, though the algebra is longer: 

E(c0c i ) = 

n-i+l [( n ) _ ( i-i ) _ ( )] 
m-i m-n+i-2 m-i 

(n) 
m-1 

i=l, 2, ..., n 

E(cic j ) = 

[ (n)_(n-j+l)_( j-1 i-1 
m m-j+l m-n+j-l)+(m-n+i-1 )] 

(n) 
m 

i< i< j < n. 
_ 

(See Appendix 7) 

Now assume that Cov(x-i,x j) = o2p li-jl for i, 
j=l,2,...,n. One can show that 
n-1 n n 
Z Z E(c.c.)pj-i : (n+l)(n-m) p-p 

i=l j=i+l m ] n-m+l 1-p 

<I[ i np n-I n ] 
- + (n-1)O 

(i-~ 

n-m+l n 
i O Z (n)(l_ O "  )ion-i 

n-m+2 (n) (l_p) 1 
i=n-m+2" 

(n-m) n (n+l-i i 
z )o • 

(n) i=l n+l-m 
m 

(See Appendix 8) 

so that 

^ o2 
VarHD(U) : ~[n + 2m 

2 
n -nm+m-i 

( n-m+ i ) ( n-m+ 2 ) 

n 

+ 2{(n+l)(n-m) p-p p [l_npn-l+(n_l)pn] 
n-m+ i l-p ( l-P ) 2 

n-m+l n 
0 Z (n)(l_ O "  )ion-i 

( n ) ( i-0 ) n-m+ 2 i=n-m+ 2 i 
m 

(n-m) n Z (n+l-i)p i} ] . 
n+l-m (n) i=l 

m 

The variance of the equal-weights procedure 
with the same covariance structure was found to 
be 

n 
O 2 n 2 + 2n(n-m+l) P (n- P-Q )] 

VarEw(~)~ = n-Z[~---m (n-m)(n-l) l-o i-~ 
| 
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Results to this point are exact, and these 
formulas are easily usable for relatively small 
n. For large n, VarHD and VarEw are difficult 
to compare algebraically in these forms, since 
the remaining sums cannot be evaluated in 
closed form without making some approximations. 
Assume now that n ÷ = and m/n + I. Then 
for any p e [-i, i] the term involving the 
first summation vanishes. (See Appendix 9.) 
For the second summation, Dr. George Weiss has 
suggested a method that leads to the following 
approximation for large n and 0 < I < i: 

m 
i 2p n y. (n+l-i) P : ( ) 

i = l  n + l - m  2 - p  m - 1  " 

(See Appendix I0) 

Using this result, 

n-i n 
~ 20 Y~ F. E(cic )pj-i P - m -- 

i=l j=i+l J n l-p 2-P 

So that in the limit as n ÷ 

- O 2 [n2+mn p 2p 
VarHD + 2{ n ~ -  m }] 

n--{ ~7 " ±-~ 

The asymptotic variance of the equal weights 
procedure with the same covariance structure 
was found to be 

~2 n 2 D 
= -- -- + 2n ----] VarEw n 2 [n-m l_o J 

The ratio of these two asymptotic variances, 
with m = ln, is 

l( i 4@) 
VarHD = i + I-X 2-p 

VarEw i + 2p 
I-X l-p 

which, for I > 0, is larger than unity provided 

l > 5p -2 
4p 

(See Appendix ii) 

The ratio is plotted in figure I for various 
values of p and X. Numeric studies show that 
it attains a minimum of 0.9583 at I = 0.38, 
p = 0.80. The supremum is 2.0, attained as I ÷ 
1 for any value of p. 

(See Appendix 12) 

Minimum Varianc e Weights 

The optimum set of weights c_, given w and an 
arbitrary covariance structure, is an important 
but unsolved problem. Clearly, weights c must 
be zero for each missing observation, but how 
should other weightsn be assigned so that 
~O ci = n and Var( ~ c.w-) is minimized? 

f=0 ± ~ 
following results are conditional on the 

observed w, not averaged over w as in most of 
the preceding material. A general solution 
is the smallest root of the determinantal 

equation I o2~ - cI 1 = 0, where o2p is the 
covariance matrix of x_, subject to the 
constraint that ci = 0 if wi = 0. However, 
this approach is too general to be useful here. 

Let X be a Lagrange multiplier and let 

V : [Var(Ec.x.) + X(Ec. - n)] 
i I i 

so that for any c k # 0 

dV d n n 
- -  : S Z [(c.c. Cov(x.x.) + ~(~c.-n)] 
dc k dCk i=0 j:0 z ] i ] i 

n 

= 2 i:0~' ci C°v(xixk) + I 

n 
Thus, V is minimized when n L c. Cov(x.x. ) is 

i:u z z] 
a constant, (-nX)/2 = Vat(P), f6r all k. 

This implies that the optimum values of c 
depend on the covariance structure of x. 
Consider the three cases discussed earlier. 
First, if @i~ = 0 for i#j we find that c k o2 is 
constant for each non-missing observation. 
Thus in this case the equal-weights procedure 
is optimal over all linear alternatives. 

For p ij = p' i~j, the result above becomes 

CkO2 + Z cipo2 
i#k 

constant, or 

n 

(l-p) c k + p Z c. z 
i=0 

constant, so that again c k is constant and the 
equal weights procedure is optimal. 

l -Jl 
If Pij = p for all i and j we have 

k-i k-i n i-k 
Y: ciP + c k + E c. p 

i= 0 i=k+l 1 

constant for all k with c k = 0 for each missing 
value. This expression is difficult to work 
with directly, but when @ is small it may be 
sufficient to consider only those terms in the 
sums such that li-kl is small, say I i-kl <_ j 
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intended sample. Second, imputation of 
specific values by the hot deck method permits 
the easy estimation of various cells in cross- 
tabulations, while this may be more difficult 
(and provide a different answer) with the 
equal-weights procedure. This, too, needs 
exploration. 

Other problems that remain unexplored are the 
effects of clustering of missing observations, 
the effects of sampling from finite 
populations, extensions of the analysis to 
problems other than the estimation of item 
means (e.g. the estimation of variances) and 
the use of non-linear functions of observed 
values to impute missing values. We have 
assumed here that "sampling weights" are all 
equal ; when sample elements have varying 
weights in the analysis, as in sampling 
proportionale to size, our assumptions about 
the structure of c are no longer valid. This 
also needs exploration. 

We believe that it is particularly important 
to undertake theoretical studies of the effect 
of hot-deck procedures on bias, since those 
procedures are commonly justified in terms of 
reduction of bias rather than control of 
variance, convenience, or other assumed virtues. 
To some extent, at least, sorting records to 
maximize serial correlations might tend to 
trade reduced bias for increased variance in 
both equal-weights and hot deck procedures, 
since missing values would tend to be clustered 
in parts of the data set where observed values 
are considerably above or below the mean. Thus 
the various possible sequences of location for 
missing values would no longer be equally 
likely, and our assumptions about c would 
change. To the extent that bias would be 
traded for increased correlation (and hence 

^ 

increased variance of ~), the bias-reducing 
properties of the hot-deck procedure are 
already accounted for in the present analysis, 
but the matter needs further study. 

If we ignore the cold deck value and 
special problems at either end of the sequence 
of sample elements, and if we assume negligible 
probability that more than one observation will 
be missing in any string of 2j+l sample 
elements, we can use 

]~-~i . k+j i-k ~ J i-k 
_7 cipk-A+ck+ Z = Ck+ ~ (Ck+i+Ck-l)P 

i=k-j i:k+l ciO i:l 

: Constant . 

Conclusions 

In the three cases examined here, the 
standard hot-deck method is inferior to the 
equal-weights method for the limited purpose of 
estimating item means. 

Two important considerations may still 
improve the value of the hot-deck procedure 
relative to the equal-weights procedure. 
First, we have assumed to this point that w is 
independent of x, implying that whether an 
observation is missing is independent of its 
true value. Under this assumption, both 
estimates are unbiased, while if it is violated 
both are in general biased,but to different 
degrees, and perhaps even in different 
directions. This matter should be explored to 
determine how each procedure performs when 
missing values are not a random subset of the 

This implies, for sufficiently small p, that we 
impute the observed value nearest the missing 
value (not just the nearest preceding value), 
except that if the missing value is equidistant 
from the nearest preceding and following 
values, we impute their mean. This seems 
intuitively reasonable. More generally, each 
missing observation is imputed by a weighted 
sum of nearby values. We have not worked out 
the variance of this modification of the hot- 
deck procedure. 
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