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The asymptotic normality of both linear and 
nonlinear statistics and the consistency of the 
variance estimators obtained using the lineariza- 
tion, jackknife and balanced repeated replication 
(BRR) methods in stratified samples are establi- 
shed. In the nonlinear case, several jackknife 
statistics are shown to have the same asymptotic 
distribution as the unjackknifed statistic. The 
results are obtained as L ÷ ~ within the context 
of a sequence of finite populations {~L } with L 
strata in gL and are valid for any stratified mul- 
tistage deslgn in which the primary sampling units 
(psu's) are selected with replacement and in which 
independent subsamples are taken for those psu's 
selected more than once. These results provide 
a theoretical basis for the commonly made assump- 
tion that (~ - @) /~v(0) (where @ is an estima- 
tor of some parameter @ and v(~) is an estimator 

A 

of the variance of @) has approximately a stan- 
dard normal or t distribution. 

i. Introduction. Many large scale surveys 

involve large numbers of strata with relatively 

few psu's selected within each stratum (Gurney & 

Jewett, 1975). The asymptotic results for stra- 

tified samples presented in this article were 

developed with such situations in mind. 

In section 2, some large sample theory for 

linear statistics is outlined for the case of 

stratified simple random sampling. In sections 3 

-5, these results are extended to the case of non- 

linear statistics, where the linearization, jack- 

knife and BRR methods may be employed. 

Extensions of the results in sections 2-5 to 

multiple character stratified multi-stage samples 

are indicated in section 6. A discussion of the 

significance of the theoretical results presented 

here in relation to the empirical results reported 

previously by Kish & Frankel (1974) is provided in 

section 7. Detailed proofs of all results may be 

found in Krewski & Rao (1978a). 

2. Stratified simple random . sampling. The 

framework for the large sample theory is provided 

by a sequence of finite populations {~L } with L 

strata in ~L where L ÷ ~. 

th 
Let YLhi denote the value of the i unit in 

the h th stratum in population L (i = 1 ..... NLh; 

h = 1 ..... L) and let YLh denote the mean of all 

NLh units in the h th stratum. The population 
m 

mean may then be expressed as YL = r'h WLh YLh 

where WLh = NLh/N L and N L = F. h NLh. 

Similarly, let YLhi denote the value of the 
• th 
i unit in the sample in the h th stratum in ~L 

• . . .  (i = l,...,nLh, h = I, ,L) selected with repla- 

cement and let YLh denote the mean of the nLh 
h th (> 2) units in the sample in the stratum. 

M 

The usual estimator of YL is given by 

YL,st = r'h WLh YLh" 
2 

Letting aLh denote the variance within the 

h th stratum in EL, the variance of YL,st 

by 

-- 2 2 

(2.1) V(YL,st) = F. h WLh OLh/ngh. 

An unbiased estimator v(YL,st ) of V(YL,st ) is 

obtained by substituting 

2 nLh -- 
SLh = (nLh- i)-i r i=l (YLhi - YLh )2 

2 
for OLh in (2.1)• 

Letting n L = r.hnLh denote the total sample 

size, the regularity conditions involved in the 

asymptotic theory are now introduced. (In order 

to avoid unnecessary repetition all limiting 

processes will be understood to be as L ÷ ~.) 

is given 

C1. F h=IWLhElYLh i - Y-Lh 12+6 = 0 ( 1 )  f o r  some 6 > 0 .  

C2 nL NLh 
• max - 0(I). 

N L l<h<L nLh 

C2'. maxl<h< L WLh = 0 (L-l). 

L 2 2 
C3. n L r.h= 1 WLh OLh/nLh 

2 
+ O  > O. 

A sufficient condition for C1 to hold is 

that the sequence of finite populations {~L } be 

uniformly bounded, i.e., maxl<i<NLh; l<h<LIYLhil 

= 0 (I). C2 is satisfied under proportional 

ag~oc~on (nLh/n L = WLh) and reduces to C2' 

under bounded ctggocat~on (maxl<h< L nLh = 0(I)). 

Conditions under which the asymptotic nor- 
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m 

reality of YL,st and the consistency of v(YL,st ) 

may be established are given in Theorems 2.1 and 

2.2 respectively. 

! 
z,. (YL,st - Y )L THEOREM 2.1 Under Cl-C3, n ,  

÷ d N(0'o2)" 

THEOREM 2.2 Under C1 and C2, 

n L{v(y L s t  ) - V(YL s t  ) } ÷ O. 
, , P 

3. The linearization method• Some parame- 

ters of interest may be expressed as a nonlinear 

function of the population mean, say @L = g(YL )" 
^ ^ 

A natural estimator of @L in such cases is @L = 
I 

g(yL,st ) . Conditions^ under which the asymptotic 

normality of @L and the consistency of the 

corresponding "linearization" variance estimator 

may be established are given in Theorems 3.1 and 

3.2 respectively. Two additional regularity con- 

ditions are required. 

m 

C4. YL ÷ lJ. 

C5. g has a continuous first derivative g' in a 

neighbourhood of ;. 

! A 

z (@L - eL) THEOREM 3.1 Under C1 - C5, n L 

÷d N(O, l g' (~) 1202) • 

THEOREM 3.2 Under C1 - C5, 

nLv L +p Ig' (~)12a2 where v L = Ig' (YL,st) 12v(YL,s~ 
is the "linearization" variance estimator. 

It follows immediately from Theorems 3.1 and 

3.2 that 

! 
z ÷ N(0, i), (3.1) ( ; L -  @L)/VL d 

providing a theoretical basis for the construction 

of approximate confidence intervals and tests of 

hypothesis involving @L when the number of strata 

is large. 

4. The jackknife, method.^ While YL, st is an 

unbiased estimator of YL' @L g(yL,st ) is not in 

general an unbiased estimator of @L = g(YL ) due to 

the nonlinearity of the transformation. The 

jackknife statistic may then be considered as an 

estimator of 0 L on the basis of bias reduction 

(Jones, 1974). Perhaps more importantly, the 

jackknife method also provides a simple variance 

estimator which does not require the evaluation 

of partial derivatives as in the case of the 

linearization variance estimator. 

Miller (1974) has given an excellent review 

of the jackknife method in the case of simple 

random sampling. The extension to stratified 

sampling, however, is not immediate and several 

different versions have been proposed. 

^hi (y-hi ^h -i r nLh ^hi 
Let @L = g L,st ) and @L = nLh i=l @L ' 

--hi 
where YL st denotes the estimator of YL computed 

' th 
from the sample after deleting the i observa- 

h th tion in the stratum. Then Jones (1974) shows 

that the jackknife estimator 

^ ^ L ( n  (4.1) JI(@L) = (1 + n L - L) @L- r'h=l Lh 
^h 

- 1 )  @ 
L 

reduces the bias to second order moments in large 

samples. Jones' jackknife variance estimator is 

given by 

(4 2 ) v  (I) L (n 1) nLh( ;h i  ;h )2  
• L J  = r.h= 1 Lh- r.i= 1 - . 

n 
Lh 

McCarthy (1966) has also proposed a jackknife 

estimator when nLh = 2(h = 1 ..... L). With 

pseudovalues def ined  by 

_ _ ^hi 
JLhi = nLh OL (nLh 1) @L " e i t h e r  

^ = 1 L ~nLh 
(4.3) J2 (@L) ~LL F'h=l ~'i=l JLhi or 

1 L 1 F nLh 
(4.4) J3(OL ) = L- F~h=l n i=1 JLhi 

Lh 

represent natural extensions of McCarthy's jack- 

knife estimator to the case of arbitrary {nLh}. 

The corresponding jackknife variance estimators are 

(2) L 1 r, nLh (JLhi - J2(OL ) ) 
(4.5) vLj = Zh=l nLh i=1 ( n L h -  1) 

(4 6) v (3) L 1 znLh (JLhi - J3(�L )) 
• LJ = r'h=l nLh i=l (nLh - i) 

2 

and 

Kish & Frankel (1974) have also proposed 
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several jackknife variance estimators when nLh = 

2 (h - 1 ..... L). Their JRR-D estimator in the 

case of arbitrary {nLh} is equivalent to v (I)" - 
LJ 

while their JRR-S estimator is given by 

(4) L (nLh - 1) n L h  (~hi  ~n )2 
(4.7) VLj = Eh= 1 hL h ~.i= 1 - . 

REMARK 4.1• when nLh = 2, Kish & Franke l 

^hi by deleting the i th actually compute @L unit in 

t h e  h th  s t r a t u m  and in~agLng the o t h ~  un£t 
^ 

twice. Since  @ i s  assumed h e r e  to  be a f u n c t i o n  
L 

-- ^h i  ba sed  on t h i s  method o f  Y L , s t '  t h e  v a l u e s  o f  @L 

of  c a l c u l a t i o n  w i l l  be i d e n t i c a l  t o  t h o s e d  ba sed  

on the previously described method. 

Conditions under which the asymptotic norma- 
^ 

lity of Ji(@L) (i - 1,2,3) and the consistency 

v~j)r~ (i = 1,2,3,4) may be established are given of 

in Theorems 4.1 and 4.2 respectively. As in the 

case of simple random sampling, a slightly stron- 

ger condition on g is required for the asympto- 
^ 

tic normality^of Ji(OL ) than for the asymptotic 

normality of @L" 

C5'. g has a bounded second derivative in a neigh- 

bourhood of ~. 

In addition to C1 - C5, condition C6 will be re- 

quired in order to establish the consistency of 

~(2) as will C7 in the case of v (3) 
LJ LJ " 

nL2 L 2 - 1 ) )  L (n - 1) = 0(1)  C6. (Eh=l nLh(nLh Eh=l Lh 

C7. L -2 L (n - 1))  L (n - 1) -1 = 0(1)  
(Yh= 1 Lh Eh = 1 Lh " 

(Note that both these conditions are satisfied in 

the important case of bounded allocation.) 

THEOREM 4.1. Under C1 - C4 and C5', 
I ^ 

nL~(Ji(@L ) - @L ) ÷d N(0'Ig'(~)I2a 2) for i = 1,2,3. 

THEOREM 4.2. Under C1 - C5, 

VL~ J)-- ÷pig' (~)l 2a2 f o r  i = 1 , 2 , 3 , 4  p r o v i d e d  n L 

in  a d d i t i o n  t h a t  C6 and C7 h o l d  in  t he  c a s e  o f  

v (2)- - and (3) r e s p e c t i v e l y .  LJ VLj 

As in (3.i), it follows from Theorems 4.1 

and 4.2 that 

(4 8) (Ji(@L)^ -eL )/fv(j))[ ÷d N(0 1) 
" " LJ ' 

for i = 1,2,3 and j = 1,2,3,4. By Theorems 3.1 

and 4.2, any of the jackknife variance estimators 

may be used in conjunction with the unjackknifed 

estimator @L in that 

(4 .9 )  ( ; L -  @L) / (v [  j))~- +d N ( 0 , 1 ) .  

5. Ba lanced  r e p e a t e  d . r e p l i c a t i o n  (BRR). 

When nLh = 2 (h = 1 . . . . .  L) McCarthy (1966,  1969b) 

has  d e v e l o p e d  a r e p l i c a t i o n  method of  v a r i a n c e  e s -  

t i m a t i o n  in  which t he  r e p l i c a t e s  a r e  h a l f - s a m p l e s  

formed by d e l e t i n g  one u n i t  in  each s t r a t u m .  The 

s e t  of  R L h a l f - s a m p l e s  used  h e r e  w i l l  have ~uZ£ 

o~thogonaZ baZance (Frank@l,  1971) .  P l a c k e t t  & 

Burman (1946) p r o v i d e  a method of  c o n s t r u c t i n g  

s e t s  o f  h a l f - s a m p l e s  w i t h  f u l l  o r t h o g o n a l  b a l a n c e  

where L + 1 <__ R L < L + 4. 

L e t t i n g - - ( r )  d e n o t e  t h e  e s t i m a t o r  o f  YL YL, s t  

based  on t h e  r t h  h a l f - s a m p l e ,  t h e  o r t h o g o n a l i t y  

c o n d i t i o n s  imply  t h a t  

(5 i) RL 1 RL 77(r) 
• F'r=l YL,st = YL, st 

and 

(5 2) RLI RL y~r  -- • - r r =  1 ( ) ) 2  - st - YL,st = v(YL,st)" 

To apply the method in the nonlinear case, 

^ (r) ,--(r) ) Then McCarthy has proposed let O L = gkYL,st " 

( s .3 )  H(8 L) = R~, 1 z 1 

as an estimator of @L and 

R L (i) - F (~[r) ^ 2 
(5.4) VLH = RE 1 r= 1 - @L ) and 

R L 
= RL 1 r =I (5.5) v(i~ 2) - F (~[r) - H (SL)) 2 

as estimators of the variance of either H(O L) or 

OL" Conditions^ under which the asymptotic norma- 

lity of H(@ L) and the consistency of the BRR vari- 

ance estimators V[H) (i = 1,2) may be established 

are given in Theorems 5.1 and 5.2 respectively. 

(Note that since all nLh 2 C2 reduces to C2'.) 

THEOREM 5.1. Under C1 - C4 and C5', 
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)/2-L (H(~)L) - @L ) ÷d N(O, Ig' (~) ]2o2). 

THEOREM 5.2 Under Cl = C5, 

(2L)V£H) +p ]g ' (> )1202  f o r  i : 1 ,2 .  

As in (4.9), it follows from Theorems 3.1 

and 5.2 that 

(5.6) (@L- OL)/(v ))~ +d N(0,1) for i = 1,2. 

^ 

Although @L may be replaced by H(OL) in (5.6) by 

virtue of Theorem 5.i, the latter estimator may 

be of limited interest in practice because of its 

greater bias. 

6. Multiple character stratified multi- 
. . . . . .  

stage sampling. The results of section 2-5 may 

be extended to the case where the parameter of 

interest @L is a nonlinear function of the popu- 

lation means for several characters. As illus- 

trated in the following example, the asymptotic 

results presented here are thus applicable in the 

case of nonlinear statistics such as ratios and 

regression and correlation coefficients. 

EXAMPLE 6.1 (Correlation coefficients). 

Consider YLhi = (YLhil ..... YLhi5) where YLhi3 = 

2 2 and Y 
YLhil' YLhi4 = YLhi2 Lhi5 = YLhil YLhi2" The 

correlation coefficient for variables one and two 

may then be expressed as 

YL5 - YLIYL2 
(6.1)  PL = _ --2 -- _ --2 -~ 

((YL3 YLI ) (YL4 YL2 ) ) 

m 

= g(YLI ..... YLS ) 

^ 

m 

and estimated by 9L = g(YLl,st .... 'YL5,st )" 

The preceding results also hold in the case 

of any stratified multi-stage design in which the 

psu's may be selected with arbitrary probabili- 

ties (wg£h replacement), provided that unbiased 

estimates of the totals for selected psu's are 

available and that independent subsamples are 

taken within those psu's selected more than once. 

7. Discussion. Under the regularity condi- 

tions applicable in (3.1), (4.9) and (5.6), 

^ ! 

_ 2 ÷d N(0,1) (7 .1)  (@L OL)/(v~) 

* denotes any variance estimator based on where v L 

the linearization, jackknife or BRR methods. This 

result provides theoretical support for the empi- 

rical work undertaken by Kish & Frankel (1974). 

Using data from the Current Population Survey and 

sample designs involving the selection of two 

psu's per stratum, Kish & Frankel studied the 

degree to which the studentized statistic in (7.1) 

follows a t distribution with L degrees of 

freedom. For a variety of statistics (with the 

possible exception of the multiple correlation 

coefficient), this approximation was found to be 

adequate for designs involving as few as six or 

twelve strata. The BRR method was found to per- 

form consistently better than the jackknife method 

which in turn performed better than the lineariza- 

tion method, although differences were small for 

relatively simple nonlinear statistics such as 

ratios. 
^ 

As indicated in (4.8), @L may be replaced 
A 

by Ji(@L) (i = 1,2,3) in (7.1). However, since a 

number of empirical studies (see Kish, Namboodiri 

& Pillai (1962), McCarthy (1969a), Frankel (1971) 

and Bean (1975) for example) have indicated that 

most estimators are approximately unbiased in 

large scale surveys, the use of the jackknife as 

a means of bias reduction may be of limited im- 

portance in practice. (One exception to this 

consensus may be the case of partial and multiple 

correlation coefficients, where Frankel (1971) 

found the relative bias to be as high as twenty 

to twenty-five percent.) 

While Kish & Frankel found the BRR variance 

estimators best in their empirical study accord- 

ing to the distributional properties discussed 

above, they also found the BRR variance estima- 

tors to be less stable than the jackknife varian- 

ce estimator, although the differences encounteled 

were small. (In order to resolve this conflict, 

Kish & Frankel recommend the use of the lineari- 

zation variance estimator for relatively simple 

statistics such as ratios and BRR for more com- 

plex statistics such as correlation and regres- 

sion coefficients.) Analytical results on the 

460 



bias and stability of these alternative variance 

estimators in the case of ratio estimation in 

small samples are forthcoming (Krewski & Rao, 

1978b). 
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DISCUSSIOH 

Phi l ip J. McCarthy, Cornell University 

These two papers are quite d i f fe ren t  in 
character, but both make useful contr ibutions to 
sample survey methodology. The Krewski-Rao paper 
is concerned with the asymptotic behavior of the 
l inear izat ion,  jackknife and balanced repeated 
repl icat ion methods of estimating the variances 
of complex s t r a t i f i e d  sample estimators as the 
number of strata approaches i n f i n i t y .  Asymptotic 
normality of the estimators and consistency of the 
variance estimators is established. In the past, 
survey s ta t i s t i c ians  have had no choice but to 
assume that these results hold, but i t  is 
comforting to have a theoret ical basis for such 
an assumption. 

The Shapiro-Bateman paper deals with the 

problem of variance estimation when only one 
primary sampling unit  is selected from each 
stratum. I t  suggests that the use of a without 
r~placement variance estimate, derived from the 
Durbin model for selecting two PSU's without re- 
placement from a stratum, provides a better 
approximation to the true variance than does the 
ordinary collapsed stratum variance estimate. 
Some empirical and theoret ical evidence is 
presented to demonstrate that this approach 
usually provides a variance estimate with 
smaller bias and variance. This study should be 
supplemented with fur ther empirical studies, and 
should possibly include consideration of other 
models for selecting two PSU's without replace- 
ment. 
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