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i. Introduction and Background 
How to make reasonable inferences about non- 

linear parameters of finite populations is a 
problem that often troubles survey statisticians. 
Exact properties of nonlinear statistics are not 
known even when simple random sampling procedures 
are used. When complex sample designs are 
employed, the problems become even more diffi- 
cult. 

Suppose we wish to form a 95% confidence 
interval for some nonlinear parameter 0, e.g., a 
variance. The usual approach is to 

(I) calculate 0, a point estimate of e; 
(2) calculate o(~), an estimated standard 

error; 
(3) assume that T = (~-e)/~(e) has an 

approximate Student's-t distribution; 
(4) let e + t 975o(e) be the confidence 

interval. " 

Attempts to validate the above procedure 
have continued over many years. Most emphasis has 
focused on variance estimation -- how to calculate 
~2(~) so that it is a "good" estimator of Var(0). 
Less attention has been given to the distribu- 
tional properties of T. 

Two important methods of variance estimation 
have emerged. One is the 6-method based on the 
first order Taylor approximation of e. The other, 
a general class of sample reuse methods, has been 
developed for which replicate parameter estimates 
are calculated after systematically omitting por- 
tions of the sample data. Details of the methods 
for simple random and stratified sampling are 
given by Mellor (1973), McCarthy (1966, 1969), 
Tepping (1968), and Frankel (1971), among others. 

Another large sampling study was done by 
Bean (1975) using data from the Health Interview 
Survey. Her sample sizes were substantially 
larger than Frankel's, and she concluded that both 
Taylor and BRR methods yield good variance esti- 
mates and similar T's. 

There have been limited empirical and mini- 
mal theoretical evaluations of the confidence 
intervals produced with these variance estimates. 
Frankel (1971) used data from the Current Popula- 
tion Study for a large sampling study to compare 
confidence intervals using Taylor, balanced re- 
peated replication (BRR), and jackknife replica- 
tion (JKR) methods of variance estimation. He 
found that a version of BRR was superior to the 
others and gave adequate confidence intervals for 
several nonlinear statistics but not for squared 
correlations. Strangely enough the deviation be- 
tween the t distribution and the distribution of 
T appeared to increase for larger sample sizes. 

Mellor (1973)~ besan to investigate the joint 
distribution of (v,o(0)) in an attempt to dis- 
cover why T~ t in some cases and T,4 t in others. 
Using computer generated simple random samples 
from infinite populations, Mellor performed two 
simulation studies. First he established that 
the standard "drop out i" jackknife procedure pro- 
duced better confidence intervals than the other 

"drop out m" replication methods or the Taylor 
method. Then he did a detailed study of the jack- 
knife T for seven different parameters. Besides 
assessing the validity of the confidence inter- 
vals, he evaluated the normality of ~, compared 
the moments of o~) with those of a constant - X 2 

distribution, and calculated the correlation be- 
tween e and 8(e). He concluded that normality of 
ix 

@ is the most important factor affecting the 
"t-hess" of T, but the correlation between 0 and 
$(e) seems to be important also. 

Numerical studies such as those of Frankel, 
Bean, and Mellor have established the legitimacy 
of Taylor, BRR, or JKR T's in many situations. 
Theoretical justification for the use of these 
methods is largely lacking. Asymptotically all 
of the methods are valid, but small sample diff- 
erences are already evident. Small sample dis- 
tribution results have been obtained only for 
special cases involving linear estimators. 

This leads to the question: when does a 
variable of the form 

~-e 
T = 

have an approximate t-distribution? We hope to 
approach this problem by studying T's for esti- 
mating different parameters for different popula- 
tions using different variance estimates. Our 
first attempt will be to investigate how the 
characteristics of the joint distribution of 0 and 
$(0) affect the "t-ness" of T. 

In the next sections, we describe a computer 
program for generating finite populations of 
stratified, clustered bivariate data and present 
some preliminary results we have obtained with 
this program. 

2. A Program for Generating Bivariate Populations 
A key component of this study of t-confidence 

intervals has been the development of a computer 
program for generating finite populations of 
bivariate data. The populations created are 
stratified with clusters of elements as the pri- 
mary sampling units. The program is very flexible 
and allows for forming populations with the follow- 
ing important features: 

(i) variable-sized primary units both within 
(to be added) and between strata; 

(2) general specification of the intraclass 
structure to allow for varying the 
degree of "clustering" ; 

(3) specification of the correlation 
between the two variables; 

(4) generation of normal, non-normal, or 
discrete (to be added) data with linear 
or nonlinear bivariate relationships; 

(5) independent generation of each stratum 
of data allowing different stratum 
specifications. 

A population consists of L strata each of 
which contains Ah(h=l,... , L) independent pri- 
mary units (clusters) of M h elements. As each 
stratum of data is formed independently, we shall 
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describe the procedure for obtaining a single 
stratum. Each stratum contains Nh=MhA h elements 
and 2N h numbers since two variables (X and Y) are 
associated with each element. 

Three primary steps are involved in the data 
generat ion : 

(i) obtaining 2N h iid N(0,1) variables; 
(2) a linear transformation to create 

clusters with a desired level of corre- 
lation between X and Y; 

(3) a transformation that sets the scale, 
location, marginal distributions, and 
shape of the regression line for X and 
Y. 

To describe the data structure for a stratum 
the following notation will be convenient. 

Let 

= lliJ i=l,..., Ah 
Uhij 

be the data for the j th element in the i th cluster 
of stratum h, and let 

_ 1 
be the 2M h vector of data for cluster i. We want 
the covariance matrix of Uhi to have the intra- 
class variance structure given by 

Var(--Uhi) = Sh = (Yh-Ph) QIM h + PhOJ~ 

where JMh is an ~ h  matrix of ones, 

Y'h (2x2) is the variance matrix of Uhi j . 

eh = - Ipll Pl2J ~ is the covariance between 
LPI2 P22 

Uhi j and Uhi k (j#k). 

The matrices I b and Ph must be chosen so that Y. , 
lh-eh, and lh+~Mh-l)P h are all positive definitne. 
Let U h be the 2N h vector of data for stratum h. 
Since the clusters are formed independently within 

each stratum, Var(U_h) = S h ~ IAh. 

To achieve this structure, we begin by 

generating _thi ~ N(O,12Mh) as the initial vector 
of data for a cluster. The vector _thi then 
undergoes a linear transformation to create the 
desired correlation structure. The linear trans- 
formation is not unique, but a useful computa- 
tional form has been found via the spectral decom- 
position of S h. After the clusters have been 
created another, possibly nonlinear, transfor- 
mation is then performed which sets (a) the loca- 
tion, scale, and marginal distributions of X and 
Y, and (b) the shape of the bivariate distribu- 
tion of X and Y. 

Presently we are choosing this final trans- 
formation from the Johnson (1949a,b) translation 
system of bivariate distributions. This large 
and versatile system of bivariate distributions 
was chosen because 

(i) the transformation is defined on bi- 
variate normal data; 

(2) the available marginal distributions for 
X and Y allow a four-moment approxima- 
tion of any continuous distribution; 

(3) the bivariate relationships between X 
and Y include linear and nonlinear 
relationships of varying shapes ; 

(4) the transformations are easy to compute. 

After this transformation is complete, either 
variable could be categorized to define dichoto- 
mous or other discrete distributions. 

Any nonlinear transformations are performed 
after the clusters are created; thus the actual 
values of the correlation and intraclass correla- 
tions may not be exactly equal to those specified 
by Eh and Ph" Since the transformations are all 
monotonic we do not expect the difference to be 
impo r t an t. 

By generating each stratum of data indepen- 
dently, differences between strata can be created 
in a number of ways: 

(i) using different cluster sizes within 
each stratum; 

(2) choosing different Y'h and Ph matrices; 
(3) using different transformations from 

the Johnson system or using the same 
basic transformation with different 
parameters. 

By using all the different options of this 
data generation system, we will be able to create 
stratified clustered populations with varying and 
interesting properties. 

All computer programs described in this paper 
were written in Fortran and run on a CDC 6400 
computer. Uniform random numbers are generated 
using the multiplicative congruential method as 
described by Barnett (1962). Normal random num- 
bers are generated from uniform random numbers 
by choosing randomly from one of five transfor- 
mations. The method is described by Marsaglia 
and Gray (1964). 

3. Sampling and Estimation Procedures 
This study is based on paired selection of 

primary units from each stratum. A sample is 
drawn by randomly choosing a pair (without 
replacement) of clusters from each stratum. To 
investigate the sampling distribution of various 
statistics, sets of K independent samples are 
chosen from the same finite population. In this 
section we describe the statistics calculated from 
each sample and the summary statistics computed 
for each set of K samples. 

The values reported in the summary output for 
each set of K samples were chosen to help answer 
the following questions: 

(i) When is the distribution of the sample 
T statistics approximately t with 
appropriate degrees of freedom? 

(2) When do two-sided 95% and 90% confidence 
intervals have the correct error rate? 

(3) How do the properties of the joint 
distribution of the parameter point 
estimate and variance estimate influence 
the distribution of the T statistics? 

In order to cover a variety of situations, we 
decided to estimate 12 different parameters and to 
calculate 9 different T's for each parameter. 
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The parameters to be estimated, with identi- 
fication, are given in Table 3.1. 

Table 3.1 

Parameters Estimated for Bivariate Population 

i 

1 

. 
l 

S 2 
X 

S 2 

Y 

X/Y 

8 
i 

B * 
y'x 

B 
x'y 

R ** 
xy 

i0 ~n(Sx2) 

ii %n(S 2) 
Y 

Y/X 12 ½%n ~I_R I 
xy 

_ 

*regression coefficient of Y on X. 
**Pearson-product correlation between X and Y. 

The population parameters are evaluated by taking 
the appropriate functions of the finite population 
data. Parameters i0, ii, and 12 were included to 
study the effect of "normalizing" transformations. 

For each sample and for each^~,, 9 different 
T values of the form T = (8i-8i)/O(8 i) were^cal- 
culated by using different methods to find 8 i and 
$(ei). The Taylor expansion method, jackknife 
replication, and balanced repeated replication are 
the basic forms used. Methods employed here are 
analogous to those used by Frankel (1971). Exact 
formulas are given here only if they differ from 

his. 

We introduce the following notation: 

~iT = "whole sample" or first order Taylor 
estimate of 8 i 

{0i~;J=I'''''L} = individual jackknife repli- 
cate estimates of 8. 

l 

0.TIj = mean of {0i~ } 

{~.B;j=l,...,k}. = individual balanced 
ij repeated replication estimates of 8 i 

^ B} 
BiB = mean of {~ij 

2 = first order Taylor expansion estimate 
~iT ^ 

of Var ( 8iT ) 

L ~j ~ir) 2 ^ 2 = (l-f) Y~ ( ij - 
~iJT j=l 

L J ~ )2 
~iJR ^ 2 = (1-f)j=l y' (0ij- iJ 

^ B_ ~ir)2 ^ 2 l-f ~ (Sij 
~iBT k j=l 

^ 2_ l-f k(~ B ~ )2 

~iBR - k j=l ij - iB " 

The 9 different T's are defined in Table 3.2. 

Table 3.2 

Definition of T Statistics 

Mnemonic 
I dent if icat ion 

Taylor 

JKRT 

JKRR 

JKTT 

JKTR 

BHRT 

BHRR 

BHTT 

BHTR 

Point 
Estimate 

8iT 
A 

8 iJ 
^ 

8 iJ 

iT 

0iT 
iB 
~B 

6 iT 
8iT 
, . 

Variance 
Estimate 

^ 2 

°iT 
^ 2 

Oij T 
^ 2 

~iJR 
^ 2 

°iJT 
A 2 

~iJR 
^ 2 

CliB T 
^ 2 

OiBR 
^ 2 

~iBT 
A 2 

°iBR 

Because of computational limitations the 
corresponding estimates for the complement samples 
Were not calculated in either the jackknife 
replication or balanced repeated replication 
methods. Combining the complement and main sam- 
ples seems quite desirable especially with jack- 
knife replication where there is an inherent 
imbalance in the samples because only one obser- 
vation from each stratum is ever dropped to form 
a replicate. 

For each sample drawn from a population, the 
following quantities are calculated for i=i,...,12 
and saved for later summary: 

(i) individual replicate estimates 
J ^ B 

0ij (j=l ..... L) ; 8ij (j=l ..... k) 

(2) parameter point estimates ~iT' ~iJ '  ~iB 
^ 2 A 2 

(3) variance point estimates ~iT' ~iJT' 
^ 2 A 2 ^ 2 

OiJR' OiBT' OiBR 

(4) the 9 T-statistics defined in Table 3.2. 

After choosing a set of K samples from the 
same finite population, the following summary sta- 
tistics are calculated and included in the computer 
output: 

(i) for each point estimate, variance esti- 
mate, and T in (2), (3), and (4) above, 
the following sample moments and func- 
tions of them: 

m I,' m 2, m 3, m 4; v I = mean absolute devia- 

t ion 
__ m 3 m 4 v I 

/b I =--'m2a/~ b 2 = ~--~; G = m2"~; 

(2) the between-sample and within-sample 
^B ~ d ~ J  variance of the 8i~ ..... , and the 

J lj 
intrasample correlations ; 

(3) for each of the T's 
A A 2 

(a) r(Si,~ i) = sample correlation 
between point estimate of 8 and 

i 
variance estimate ; 

(b) r(l~i-oil,~) ; 
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(4) for each of the T's, the number of values 
falling in specified intervals of the t- 
distribution. 

Other calculations and tabulations done as part of 
the analysis will be described in later sections. 

4. Data Base for Present Analysis 
Results reported here are based on K=200 sam- 

ples chosen from each of 9 finite populations. 
Each population consists of either 6 or 12 strata, 
and each stratum contains Ah=40 clusters. Selec- 
ting two clusters without replacement from each 
stratum gives a finite population correction of 
(i-f)=0.95 in all cases. Unless stated otherwise 
all populations have clusters which contain Mh=6 
e±ements, and all strata were identically generated. 
Descriptions of the populations are given in 
Table 4.1. Study of the table reveals that we have 
hardly begun to explore the variety of population 
structures that can be created with this program. 
The richness of the Johnson system and methods for 
specifying stratification remain largely untouched. 

Table 4.1 

Description of Finite Population 

Pop'n # of 
ID Strata 

i 12 

2-6 6 

2-12 12 

3 6 

4-6 6 

4-12 12 

5-6 6 

5-12 12 

6* 12 
_ 

Parameters of 
Generating Distribution 
, 

p P X Y 
xy 

0 ~ N(10,4) 

" I I  , l  

N(30,25) 

;I 

.7 

o 

" ,, ,, 

05 N(10,4) 

~! I !  1, 

105 N(IO,4) 

N(10,4) N(30,25) 

Johnson fu: fL =l°g-n°rmal 
U=24, ~2=36, ~i, 02=. 65 

=0, B2=36 ~i=i. 75, B2=8.9 

N(30,25) 

N(30,25) 

*Stratification: 4 strata with M h = 3 
4 strata with M h = 6 
4 strata with M h = 12 

5. Preliminary Results 
In this section we present the results of 

some simple analyses done to determine when the T 
statistics yield 95% and 90% confidence inter~rals 
for ~° which have the correct error rate. The 

l 
critical values of t used in this analysis were 
obtained from the t-distribution with L-I degrees 
of freedom. Although others have used L degrees 
of freedom, Frankel (1971) notes that there is no 
theoretical basis for doing so. We chose L-I 
because the rank^~of the ~uadratic forms involved 
in calculating o~j R and O2BR for sample means is 
L-I. A survey of the intervals does not reveal an 
excessive number of undercoverages; however, the 
issue of appropriate degrees of freedom needs to 
be examined more thoroughly in the future. 

We wish to assess the effect of the following 
variables on the distribution of the T's: 

(i) characteristics of population structure, 
such as cluster size, choice of Z h and 
Ph, stratification effects, marginal 
distributions of X and Y, etc.; 

(2) functional form of the paramter estimate; 
(3) type of t-statistic being used. 

The effect of population structure can be estimated 
only by making comparisons across different popula- 
tions. Many populations will have to be generated 
before these effects can be accurately determined. 
Each parameter is estimated once for every popula- 
tion, and each T is calculated for every para- 
meter. The nested arrangement of these variables 
is analogous to the arrangement of treatments in 
a split-split plot design with population charac- 
teristics as whole plot treatments, parameters as 
subplot treatments, and T's as sub-subplot treat- 
ments. This hierarchical structure of treatments 
means that T effects can be measured most accurate- 
ly and population effects least accurately. 

With the limited data we now have, we will 
focus on comparing the different T's and make only 
general comments about the parameter and popula- 
tion comparisons. The results presented here are 
based only on the properties of the 95% and 90% 
confidence intervals for ~°. 

l 

With K=200 samples chosen from each population 
we expect E95=I0 T's to fall outside the 95% cen- 
tral region of the t-distribution and E90=20 T's 
to all outside the 90% region. For a given sample 

T distribution, we observe the frequencies 095 and 
090 of T's outside the specified regions. If the 
distribution of T is in fact t, then 0(095)=3.08 
and 0(090)=4.24. A set of 200 T's is considered 
to yield "adequate" 95% confidence intervals if 
10-EI_<O(0). If all the T-distributions are true 
t's, about two-thirds of the confidence intervals 
should be adequate. 

In Table 5.1 we examine the adequacy of the 
confidence intervals by T and by population. The 
numbers in the body of the table are the number 
of parameters (e i) for which the confidence inter- 
vals are adequate with that particular T. 

Looking at the row marginals of Table 5.1, 
we quickly see that the balanced repeated repli- 
cation T's yield the best confidence intervals. 
The two T's, BHTT and BHTR, which use the whole 
sample point estimate eiT have a slight edge. The 
worst confidence intervals come from the JKRR and 

^2 JKTR T's which use OiJR, the sum of squares around 
the replicate mean, as the variance estimator. 
Falling between these two groups are the JKTT, 
JKRT, and Taylor T's. 

Our numerical results indicate that the poor 
performance of JKRR and JKTR may be partially 
explained by a negative bias in the variance esti- 

A A 2 

mator O2jR . A simple calculation shows that oij R 
does in fact have a small negative bias when @i 
is a population mean or total and that the bias 
approaches zero when L is large. 

Other comparisons of the T's based on the 
values of X 2 goodness-of-fit statistics and other 
functions of the coverage rates lend firm support 
to the general superiority of the balanced 
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Table 5.1 

Adequacy of Confidence Intervals 
by T and by Population* 

Taylor 95% 

90% 

JKRT 95% 
90% 

JKRR 95% 
90% 

JKTT 95% 
90% 

JKTR 95% 
90% 

BHRT 95 % 
90% 

BHRR 95% 

90% 

BHTT 95% 
90% 

BHTR 95% 
90% 

% ade- 95% 
quate 90% 

Population 

cq 

3 '~ ~ '~ ~ 6 
~ ..~ u'3 u'3 

3 9 i0 7 4 5 i0 9 9 
3 9 ii Ii 3 4 7 ii 4 

3 i0 8 8 3 5 i0 i0 9 
4 I0 9 9 3 4 7 12 7 

0 5 8 2 3 5 3 6 4 

i 2 7 i 3 3 i Ii 4 

3 9 9 i0 4 5 ii 9 ii 
4 9 I0 i0 3 5 7 ii 6 

0 5 8 3 1 5 3 6 5 
2 2 8 2 4 4 2 9 5 

4 8 9 9 6 8 9 ii I0 
7 9 i0 12 6 7 8 Ii 5 

4 8 9 i0 6 8 9 ii 9 
6 9 i0 12 6 6 9 12 5 

7 8 i0 9 6 8 7 i0 ii 
7 i0 I0 ii 6 6 i0 ii 6 

6 8 !0 i0 6 9 8 i0 ii 
7 i0 i0 ii 6 6 9 Ii 6 

28% 65 75 63 36 54 65 76 73 
38% 65 79 73 37 42 56 92 44 

% ade- 
quate 

61% 
58 

61 
60 

33 
31 

66 
60 

33 
35 

69 
69 

69 
69 

70 
71 

72 
70 

59 
58 

*Entries are the number out of 12 parameters for 
which confidence intervals are adequate. 

repeated replication T's and the general inferi- 
ority of JKRR and JKTR. 

The column marginals of Table 5.1 allow some 
comparisons to be made among the different popula- 
tions. The relations we expect to find do appear, 
but it is too early to assess their magnitude. 
Large populations (more strata) are better than 
small. Unclustered populations are better than 
clustered. Normal distributions are better than 

skew, heavy-tailed distributions. The stratified 
population (6) is somewhat worse than the corres- 
ponding unstratified populations (2-12 and 5-12), 
but this effect is masked by the larger cluster 
sizes in population 6. 

Some slightly more curious results can be 
found in Tables 5.2 and 5.3 which look at the 
adequacy of the confidence intervals as a function 
of the type of parameter being estimated. For 
Table 5.2 we grouped the parameters into the 
following classes : 

(i) means 
(2) variances 
(3) log-variances 
(4) ratios with R x. ~ 0 y 
(5) ratios with R x_ ~ 0.7 
(6) regression coe{ficients with Rxv ~ 0 
(7) regression coefficients with Rxy = 0.7 
(8) correlations with R = 0 -~y 
(9) correlations with R ~ 0 7 --xy 

(i0) Fisher's z with~ Rxy. ~ 0 
(Ii) Fisher's z with Rxy ~ 0.7 

Table 5.2 

Adequacy of 95% Confidence Intervals 
by Parameter Type* 

Parameter 
Group s 

x 
Y 

s 
s x 

------y-~ 

** X/Y 
Y/X 

***--°-- 

x/Y 
Y/X 

**By "x 
B x 

*egy.x  
Bx.y 

R xy 

f, . ' : ,  R xy 

Z(R) 

***z(R) 

Population 

cq 

1 ~ ~ 3 ~ ~ , , , ? ~ 6 

0 3 i 7 i 9 9 9 8 
7 8 6 0 7 9 9 8 9 

0 0 0 4 0 0 0 4 0 
0 7 8 7 0 0 7 8 6 

i 7 3 7 0 0 7 7 3 
2 9 9 5 0 i 8 6 8 

9 9 9 9 
9 9 8 9 

0 7 7 9 8 
5 7 7 9 7 

i 9 2 4 
7 9 4 9 

5 9 3 9 6 
6 5 3 7 9 

7 9 4 4 

0 4 6 0 8 

3 9 4 4 

4 6 4 6 8 

*Entries are the number (out of 9) T's that had 
adequate 95% confidence intervals. 

**R ~ 0 
xy 

***R ~ 0.7 
xy 

% 

ade- 
quate 

68% 

31 

51 

99 

73 

63 

69 

67 

40 

56 

62 

The data in the body of Table 5.2 are the 
number (out of 9) of the T's that gave adequate 
95% confidence intervals for a given parameter- 
population combination. 

Before over-interpreting the results in 
Table 5.2 we should note that the behavior of 
the 9 T's within a population-parameter cell is 
very highly correlated; therefore, the effective 
sample size for estimating the marginal percen- 
tages is not nearly so large as it seems. The 
effects discussed here are supported by other 
calculations not included in this manuscript. 

(i) The easiest parameter to estimate is 
the ratio of two independent means. 
This is true even in the extremely non- 
normal populations 4-6 and 4-12. 

(2) Confidence intervals for means are more 
erratic than expected. This is the 
parameter for which the theoretical t- 
distributions should be valid. 

(3) Variances are practically impossible to 
estimate with the sample sizes and pop- 
ulations considered here. The logarith- 
mic transformation helped, but not so 
much as we had hoped. 
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(4) The value of Fisher's z-transformation 
for estimating correlations is question- 
able. Other tabulations have shown the 
approximate t-distribution for trans- 
formed correlations to be worse than 
this table indicates. 

Another interesting view of the confidence 
intervals is given in Table 5.3 which tabulates 
the number of adequate confidence intervals by 
parameter and T summing across populations. The 
numbers in the table are the number (out of 9) of 
populations for which the 95% and 90% confidence 
intervals are adequate. 

The most important feature of Table 5.3 is 
the general utility of balanced repeated replica- 
tion for estimating all parameters except 
variances and log-variances. Remember, only two- 
thirds of the confidence intervals should be "ade- 
quate" -- with our definition -- even under ideal 
circumstances. The poor behavior of the confidence 
intervals of the X's is an anomoly for which we 
have no explanation, but it seems to be related to 
the poor results for S 2. Ratios seem to be esti- 
mated well by all T's except JKRR and JKTR. The 
poor performance of these T's occurs for all 
paramet ers. 

Table 5.3 

Number of Adequate Confidence Intervals for 
Parameter by T Combinations* 

Parameter 

95% 
90% 

95% 
90% 

S 2 95% 
x 90% 

S e 95% 
y 90% 

X/Y 95% 
90% 

Y/X 95% 
90% 

B 95% 
y.x 90% 

B 95% 
x'y 90% 

R 95% 
xy 90% 

%nS z 95% 
x 90% 

inS e 95% 
x 90% 

z (Rxy) 95% 
90% 

5 6 6 5 5 5 5 5 5 
6 6 3 4 5 6 6 6 6 

7 7 4 8 3 8 8 8 8 
8 7 6 8 6 8 8 8 8 

I 0 0 i 0 i i 2 2 
3 2 1 3 1 2 2 5 4 

6 6 1 6 2 6 5 5 6 
4 3 2 4 2 5 5 4 4 

8 8 5 9 6 7 8 8 9 
8 8 4 8 4 7 7 7 7 

9 9 5 9 4 8 8 9 9 
6 8 2 6 5 6 6 6 6 

6 4 4 5 3 6 6 7 7 
5 7 2 5 3 8 9 9 9 

7 7 3 9 3 8 8 7 7 
7 6 3 4 4 7 7 6 7 

4 3 1 4 2 7 7 7 7 
5 5 3 5 2 7 6 7 7 

5 4 0 5 0 4 4 7 6 
4 3 1 7 0 6 5 7 7 

5 6 5 5 ~ 5 6 4 6 
5 4 2 3 3 4 5 4 3 

2 6 2 6 2 7 8 7 7 
2 5 3 7 2 9 9 8 8 

6. Summary 

Our ultimate goal is to learn how the dis- 
tribution of sample T's is affected by the joint 
distribution of ~ and ~2(~). To begin the inves- 
tigation we have developed a method for generating 
data to help elucidate this relationship. A first 
step in the analysis is to characterize the sit- 
uations (populations, sample sizes, parameters, 
types of estimators) which produce good T's and 
those which produce bad T's. 

We have made some progress in this direction. 
An important result is that the BHTT and BHTR T's 
are superior to the others and are quite reliable 
for all parameters except variances. As others 
have found for simple random sampling, we have 
discovered that the T's for estimating variances 
are erratic. Our future analyses will incorporate 
data from the complement samples. In particular, 
this should considerably improve the performance 
of the JKRT's. 
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