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INTRODUCTION 
This paper describes the research 

involved in the use of network analysis 
to solve a sample allocation problem, mo- 
tivated by the sample design for the U.S. 
Department of Transportation's annual 
General Aviation Activity and Avionics 
Survey. The paper begins with the pre- 
sentation of the general sample alloca- 
tion problem and its formulation as a 
network model. It continues with a tech- 
nical discussion of the technique chosen 
for solution, the out-of-kilter algorithm, 
describing the general procedure and re- 
porting results of various tests of sen- 
sitivity performed on the model. It con- 
cludes with some specific applications to 
the General Aviation Survey, and to an- 
other related sample allocation situation. 

THE PROBLEM 
The need for a two-dimensional 

stratified sample design arises when the 
main products from a survey are estimates 
for a particular population characteris- 
tic classified by two independent crite- 
ria. In two-dimensional stratification 
the population is divided into mutually 
exclusive cells, and sample units are 
then allocated to the cells for the pur- 
pose of sample selection. The popula- 
tions and sample sizes can be displayed 
in a two-way table as in Table i. 

populations. Nevertheless sampling units 
are allocated to individual cells prior 
to sample selection to insure that the 
desired marginal sample sizes are 
achieved. 

Generally, the allocation of sample 
units to individual cells takes place in 
two steps. First, the marginal sample 
sizes are determined. Sometimes the mar- 
ginal sizes are proportional to the pop- 
ulations of the rows and columns, as when 
20% of the population is to be sampled 
and the marginal sample sizes are simply 
20% of the marginal populations. At 
other times the design calls for dispro- 
portional sampling from the marginal pop- 
ulations, as when the marginal sample 
sizes are determined optimally according 
to the variances of the marginal popula- 
tions. 

The second step is the allocation of 
the marginal sample sizes across individ- 
ual cells. In the case of proportional 
sampling, the same proportion used to de- 
termine the marginal sample sizes can be 
applied to the populations of individual 
cells to allocate the sample uniformly to 
the cells. In the case of disproportion- 
al or optimum sampling, cell allocation 
is not as straightforward. For example, 
suppose a 20% sample is required from a 
population, but with target marginal sample 
sizes as indicated in Table 2. 
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This paper focuses on the type of 
sample design where estimates are not re- 
quired for populations within individual 
cells, but are required only for marginal 
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Because of population constraints in in- 
dividual cells, it is impossible to meet 
the minimum requirements for every mar- 
ginal sample size without oversampling in 
some of the rows and columns. Cell (1,2), 
with a population of only 20, forces ex- 
cessive units to be allocated to both row 
2 and column 3. Cell (2,3) is excluded 
entirely from the sample to minimize 
oversampling. 

In such a small matrix it is rela- 
tively simple to determine an allocation 
satisfying the marginal totals with mini- 
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mum oversampling, which is desirable when 
survey resources are limited. But as the 
matrix expands, the allocation process 
becomes more complicated, especia]ly if 
the number of cells to be included in the 
sample is also of concern. 

A general method for obtaining a 
feasible allocation when sampling dis- 
proportionally in a two-dimensional 
stratiffed sample design was developed 
using a network analysis formulation 
solved by the out-of-kilter algorithm, 
Ford and Fulkerson (4). Given marginal 
sample sizes, and population limits and 
minimum samples sizes for each cell, it 
guarantees that the resulting allocation 
will achieve the desired marginal totals 
with a minimum of oversampling. To apply 
the algorithm, the sample allocation 
problem must be formulated as a network 
model. 

NETWORK FORMULATION 
The minimum total sample size is 

treated as a particular flow which cir- 
culates in a closed system between two 
nodes.s, the source, and t, the sink. 
The intervening network structure con- 
sists of a set of arcs from s connected 
to respective row marginal nodes, con- 
nected in turn by cell arcs to respec- 
tive column marginal nodes, leading fi- 
nally through a set of arcs into t. One 
additional arc recirculates the flow from 
t back to s. When appropriate unit costs 
and capacity limitations are placed on 
each arc, the out-of-kilter algorithm 
finds the minimum cost flow, correspond- 
ing to the minimum total sample size. 
Flows on cell arcs then represent the 
allocation of the sample to the cells. 

Figure 1 shows the network repre- 
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sentation of the matrix. Each row i is 
allocated at least n. but no more than 

i. 
N.j. ; these are then the bounds (Ni. ,ni.) 

on the flow along the arc from the source 
to the ith row marginal node. Similarly 
for each column j. Each unit of flow on 
these source and sink arcs is given a 
cost C. or C . of zero because the row 

i. .3 
and column totals are free to vary within 
the established bounds. Each cell (i,j) 
is allocated at least m.. (zero in the 

13 
Table 2 example) but no more than N... 

i] 
Each unit of flow on the cell arcs is 
given equal cost C.. (assumed arbitrarily 

13 
to be one), to indicate indifference as 
to which cells are used as long as a min- 
imal sample is found. The arc from the 
sink to the source has to recirculate the 
entire flow with no penalty; thus it has 
bounds of N above and n below, with C 

ts 
equal to zero. 

Every linear program (known as a 
primal problem) has a corresponding prob- 
lem known as its dual. Three conditions 
must be met for a solution to be optimal: 
(I) primal feasibility (it satisfies the 
constraints above), (2) dual feasibility 
(it satisfies the constraints in the dual 
of the above), and (3) complementary 
slackness (a set of conditions relating 
the primal and dual problems which states 
that a positive variable in one problem 
implies equality in the corresponding 
constraint of the other). 

When a linear program has a minimal 
cost flow network formulation, the out- 
of-kilter method at each iteration clas- 
sifies each arc either as in-kilter if 
its flow satisfies all three conditions, 

(N. 2 ,n.  2 ) 

K~ .% 
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N = population 

n = sample size for row or column 

m = minimum cell sample size 

C = cost 

(N 
t s  m 
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or out-of-kilter if not. When every arc 
is in-kilter, an optimal solution has 
been found. 

The algorithm commences with zero 
flow on all arcs. The arc most out-of- 
kilter is found, a circulation of flow 
(i.e., a directed loop containing the arc) 
detected, and the flow in the circulation 
increased or decreased in order to bring 
the arc into kilter. These iterations 
continue so that the number of arcs in- 
kilter is always increasing, hence con- 
vergence is assured. The advantage of 
this algorithm over the simplex method 
for solving linear programs which have no 
network structure is that the procedure 
is entirely additive, leading to a more 
efficient computation process. 

Formulated as a linear program with 
integer-valued variables, the minimal 
cost flow problem is then to determine 

the set of n.. which minimizes F C..n.. 
• 3 ij 13 13 

subject to: 

n. < n " < N" ' ~ i l i j  i. -- Sl -- i. 
Flow bounds 
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-- -- on 

n . < n < N q j each arc 
.3 -- jt -- .j' 

n = Z n ~ i Flow 
si j ij' conservation 

njt = Z n ~ j at 
i ij' each node 

nts = Z n = Z n i si j jt 

OPERATING CHARACTERISTICS 
The algorithm was applied to a vari- 

ety of sample allocation situations and 
subjected to a series of sensitivity 
tests to changes in parameters. With re- 
gard to the amount of oversampling neces- 
sary to meet the minimum marginal sample 
sizes, results indicated the optimum 
overall sample size depends on five 
factors, both individually and in combi- 
nation. These factors are discussed in 
detail below. 

i. Sample size relative to population. 

FIGURE 2 

NUMBER 

OF 

EXCESS 

SAMPLE 

UNITS 

I I 

Ratio of Sample Size to Population 1 "- 

Figure 2 illustrates the general re- 
lationship of oversampling to the sample 
size factor given that the other four 
factors remain constant. The shape of 

the graph for any one population-sample- 
size case will, of course, depend on the 
particular characteristics of the matrices. 
For example, a proportional sample, no 
matter how large the proportion, will 
never require oversampling, and the corre- 
sponding graph would be flat. On the oth- 
er hand, some samples may be so dispropor- 
tiona~ to the population that oversampling 
may be necessary even at the overall sam- 
ple proportion of only 1%, and the corre- 
sponding graph would rise sharply from 
zero to its peak, then taper off slowly as 
the sample size increased. 

2. Difference in marginal distributions 
between population and sample size. 
The more disproportional the sample, 

the greater the probability that the solu- 
tion will require excess sample units, 
given the other four factors remain con- 
stant. The precise relationship would 
again depend on the particular sampling 
situation being examined. For instance, 
for a very small total sample size, over- 
sampling may never occur no matter how 
disproportional the distributions between 
the population and the sample. In 
contrast, if the sample were large rela- 
tive to the population, the number of ex- 
cess sampling units would increase drama- 
tically as disproportionality increased. 

3. Number of cells with low or zero pop- 
ulations. 
The number and location of cells with 

very low or zero populations within the 
two-dimensional matrix affects the amount 
of oversampling necessary to achieve mar- 
ginal sample sizes. The example in Table 
3 illustrates this point in the extreme. 

In Table 3A six of the nine cells are emp- 
ty, but their location within the matrix 
makes it possible nevertheless to allocate 
the sample without exceeding any marginal 
totals. In Table 3B the non-empty cells 
were shifted to different positions with- 
in the matrix, yielding an allocation 
which necessitates oversampling by i0 
units. 
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TABLE 3 (continued) 

4. Magnitude of cell minima. 
Manipulation of the cell minima for 

a matrix determines the spread of the 
resulting allocation across cells of the 
matrix and can also affect the amount of 
oversampling required. If the cell min- 
ima are set at zero, the algorithm pro- 
duces a solution which not only minimizes 
the excess sample units required to sat- 
isfy marginal totals, but also reduces 
the number of cells to which the sample 
is allocated. This may be a desirable 
feature of the algorithm if there are 
reasons, such as cost or geographical 
location of cells, for limiting the num- 
ber of cells included in a sample. On 
the other hand it may be a requirement, 
as when the desired sample size is less 
than the number of cells with non-zero 
population. 

Setting the minima of cells with 
non-zero population to one or greater 
assures that every cell will be included 
in the sample with a probability of one. 
This may be desirable to eliminate the 
possibility of any biases in the survey 
results caused by exclusion of certain 
segments of the population from the sam- 
ple. However, in any given matrix, mini- 
ma of zero will yield the smallest sample 
size of all possible minima. 

5. Relative costs of cells. 
Since the main objective of the al- 

gorithm is to minimize the overall cost 
of flow through the network, it will 
tend to oversample from cells with lower 
unit costs. The two matrices in Table 4 
illustrate how costs influence the resul- 
ting allocation when certain costs are 
lowered to give those cells a greater 
probability of being included in the 
sample or of being more heavily sampled 
than others. The costs associated with 
the cells are shown to the right of the 
population in each cell. The first ma- 
trix shows that, ignoring the costs, 

it is possible to find an allocation of 
the marginal sample sizes that does not 
require oversampling. Matrix 4B shows 
the allocation that the algorithm pro- 
duced, which has a lower cost function, 
but which also has five extra sample 
units. 
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Total Cost = 260 

TABLE 4 

These five matrix characteristics 
thus affect the final sample allocation. 
There remains an interesting associated 
question: In the case where there is 
more than one allocation minimizing the 
cost function, how does the algorithm 
pick among them? Experimentation with 
numerous matrices has led to these ad hoc 
observations: 
i. If all lower capacities are set to 
zero, the algorithm limits the allocation 
to a subset of cells of the matrix, but 
does not necessarily choose the minimum 
number of cells for which the cost 
function is minimized. 
2. If all costs are uniform over the 
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network, the algorithm as programmed dis- 
tributes extra required sample units to 
cells with excess capacity beginning in 
the upper righthand corner of the matrix, 
ending in the lower left. 
3. If costs differ from cell to cell, the 
algorithm distributes extra required sample 
units to cells with the lowest costs and 
with excess capacity. 

EXAMPLES 
The work which motivated this research 

was the development of the sample design 
for the U.S. Department of Transportation's 
General Aviation Activity and Avionics 
Survey. This survey, implemented for the 
first time in January 1978, is an annual 
national survey of approximately 30,000 
of the 215,000 registered general aviation 
aircraft in the United States. The sample 
design for the survey is a two-dimensional 
stratified sample of manufacturer/model of 
aircraft by state of registration. There 
are approximately 350 manufacturer/models 
and 54 states and territories for which 
estimates are required, yielding more than 
18,900 cells, about half of which are 
empty in the design matrix. 

Determination of cell sample sizes is 
a two-step process. First, allocation of 
the target sample size of 30,000 across 
manufacturer/model and state is optimally 
determined. Then the marginal sample 
sizes are allocated across the cells. In 
a test matrix involving i0 manufacturer/ 
models of aircraft and all 54 states and 
territories, the target total sample size 
was 740, to he distributed over the 540 
cells, 214 of which were empty. The out- 
of-kilter algorithm was run with all cell 
costs and all non-zero cell lower capac- 
ities set to one to assure that all seg- 
ments of the population would appear in 
the sample. It produced a solution calling 
for 755 aircraft, only 15 more than init- 
ially desired. The 15 extra aircraft were 
allocated to five of the states and ter- 
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Solution in Parentheses from 
Cochran 
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TABLE 5 

S UMMARY 
The main features of the out-of-kil- 

ter algorithm as applied to a two-way 
stratified sample design are: 
i. It allocates disproportional samples. 
2. It minimizes the amount of oversampling. 
3. It will not assign sample units to 
empty cells. 
4. It works efficiently on both small 
and large matrices. 
5. The spread of sample units across 
cells can be controlled. 
6. It can incorporate the costs associated 
with specific cells into the allocation 
process to minimize survey costs. 
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, C.z. = i, C.j = i, ~i,j. This 

cell cost scheme was designed to imitate 
as closely as possible the proportional 
probabilities used by the Bryant, Hartley 
and Jessen method. The sample allocation 
determined by the network analysis appears 
in Table 5, too. Note the similarities 
between the two outcomes. 
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