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I. Introduction 

One of the principal objectives of survey 
design is the construction of a sampling and 
data collection system which is as efficient as 
possible, within budgetary and other 
constraints, for estimating the main parameters 
of the survey. Many trade-offs are typically 
involved in attempting to achieve this 
objective. For example, in planning a 
household survey, the statistician must decide 
whether it is more efficient to invest a 
portion of the survey budget on rigorous 
interviewer training (thus attempting to reduce 
measurement errors) or to use the entire budget 
on an increased sample size (thus reducing the 
sampling error of the survey). The concept of 
total sur_~ design (TSD), as defined in 
Horvitz and Wolter (1975), recognizes the 
various sampling and nonsampling components of 
error, and implies an allocation of the total 
survey resources to the various error 
components in a manner which minimizes the 
total error of estimate. 

There has been at least one recent effort to 
formalize the ideas of TSD. Lessler (1975) 
developed a double sample sampling scheme in 
which the first stage sample is enumerated 
using an inexpensive but imperfect measurement 
method, while the smaller second stage sample 
is also enumerated by a method that is both 
costly and accurate. Thus, this scheme invests 
a portion of the survey budget to reduce or 
eliminate the estimator bias due to measurement 
errors. 

in this paper, we formalize the ideas of TSD 
in another direction. The general problem we 
consider is the following: 

A given survey may be conducted 
under either of two (or more) 
sets of general survey 
conditions, each giving rise 
to different measurement 
error distributions, and each 
being associated with 
different per unit costs. 
What is the optimum allocation 
of the sample to the two 
conditions? That is, should 
the entire sample be 
enumerated under one set of 
conditions or the other, or 
should a portion of the sample 
be enumerated under each of the 
alternative conditions. 

Section 2 describes the specific allocation 
problem to be considered. Our technique for 
modeling measurement errors is also introduced 
in this section, and then developed in section 
3. The technique is a straightforward 
extension of the Census Bureau model, discussed 
by Hansen, Hurwitz, and Bershad (1961) ; Koch, 
(1973) ; and others. The optimum allocation 
results are worked out in section 4. Section 5 
discusses the allocation results vis-a-vis a 
model which incorporates the effects of 
interviewers, and section 6 closes the paper 
with some extensions and a general discussion. 

2. The Allocation Problem 

We assume the finite population is composed 
of a fixed number N of identifiable units. 
Attached to each unit j is the true 

o value, say Yj , of a characteristic y . 
The specific allocation problem we are 
interested in presumes that it is desired to 
estimate the population mean 

N 
~o : z y?/N . 

j=l ] 

o We assume, however, that the Yj are 
unobservable, and instead associate an 
observable bivariate random variable 

Ytj - (Ytjl' Ytj2 )" 

to each unit j=I,...,N. The elements of '~tj 
represent erroneous measurements of yO j under 
two sets of general survey conditlons, G 1 
and G2 , at time (or trial) t . 

We shall assume that a simple random sample 
of size n is selected without replacement. 
In turn~ this sample is randomly split into two 
groups, nl and n 2 , the first being 
enumerated under conditions G 1 and the second 
under conditions G 2 • Let s i and s 2 
denote the two samples, and let S=SlUS 2 denote 
the combined sample. Then, 

Ytl = F~ Ytjl/nl 
jcs I 

and 

Yt2 : 7 Ytj2/n2 
Jcs 2 

denote the sample means of the first and second 
samples, respectively. 

An important example of this problem is where a 
sample may alternatively be enumerated by 
telephone or personal interview, with the 
remaining general conditions the same in both 
cases. 

We shall consider two members of the class of 
estimators which are defined_ by a weighted 

combination of Ytl and Yt2 " The first 
estimator 
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Yt (1) : ( n l / n ) Y t l  + (n2 /n )Y t2  (2 .1 )  

weights according to the sample size, while the 
second estimator 

Yt(2) = e0Yt l  + (1 - e0)Yt2 (2 .2 )  

uses the minimum variance weights. If we let 
v2~ ' v2L ' and v12 denote the variances of and 
covarzance between Ytl and Yt2 ' then the 
minimum variance coefficient is 

: 2 _ 2v ) ~0 (v~ - vl2)/(v ~ + v 2 12 " 

Finally, we shall adopt the simple cost 
function 

C = cln I + c2n 2 . (2 .3 )  

In this notation, C denotes the total survey 
budget, c I denotes the per unit cost of 
enumerating the sample under conditions G 1 , 
and c2 denotes the per unit cost under 
conditions G2 • 

In section 4, we shall work out the optimu m 
values of n I and n 2 . In this development, the 
term optimum shall mean those values of n I and 
n2 which minimize the variance of Yt (I) 
or Yt (2) subject to fixed cost C. 

3. Measurement Error Model 

In preparation for solving the allocation 
problem, we develop explicit expressions for 
the variances of Yt(1) and Yt(2) . We 
assume that the random variables Y tj have 
bounded second moments, and let 

Ujl : E{Ytjll jl} , 

Zj2 = E{Ytj21J2} , 

dtjl = Ytjl - Zjl ' 

dtj2 = Ytj2 - Zj2 ' 

a 2 : E{d 2 J jl} 
31 tjl ' 

a~2 = E{d 2 lj2} 
tj2 

Ojlil = E{dtjldtillJl, il} , 

= E{dtj2dti21J2, i2} , °j2i2 

and Ojli2 = E{(dtj I )(dti 2 )ljl, i2} for 
i#j=l,...,N, where the expectations are taken 
with respect to the distribution of measurement 
errors. The means ~jl and ~j2 are not 
necessarily assumed to be equal, nor are they 
assumed to equal the true value yO . The 
covariances ajlil and aj2i2 may ~e nonzero 
if the two units, i and j, are enumerated by 
the same interviewer, processed by the same 

clerk, or otherwise "measured" by a common 
organization. We would assume that the a~li 2 

• J 
are zero i f different enumeratlon and 
processing teams are employed in the two 
samples, s 1 and s 2 ; otherwise, the ajli2 
may also be nonzero. 

It can easily be shown that the expectations 
_ 

and variances of Ytl and Yt2 are 

E { Y t l  } : M1 ' (3 .1 )  

E{Yt2}  : M2 ' (3 .2 )  

2 
Vl : ( l _ n l / N ) S  1 / n l + ( a 2 d l / n l ) [ l + ( n l - 1 ) P l l ]  , (3 .3 )  

v22 = ( l_n  2 /N)S2u2/n2+(a~2/n2) [ l+ (n2_ l )p22 ] ,  (3 .4 )  

where 

N 
E 1 : Z. Ujl/N , 

] 

N 

M2 = y'. Uj2 
] 

/N , 

N 
S 2 : (N - l )  -1 Z (~ j l -M1 )2  
]/i • ' ] 

N 
S 2 : (N - l ) - 1Z  (~ j  2-M2 )2 

~2 . ' ] 

N 
2 2 

adl : Z. ajl/N , 
] 

N 
2 2 

a,~ o : E a .  / N  
• 32 <lz- 

] 

N 
2 : N -I(N-1)-I X Z ailjl 

adlPll i#j 

and 
N 

2 = f f - l ( d - 1 )  -1 z z a ad2P22 i # j  i 2 j 2  

For a complete development of these expressions 
see, e.g., Hansen, Hurwitz, and Bershad (1961). 
The first term on the right side of (3.3) 
represents the sampling variance of ]tl ' 
while the second term is the measurement error 
variance. Similar remarks apply to the two 
terms on the right side of (8.4). We do not 
have a covariance (or interaction) between 

• . 
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sampling error and measurement error as do some 
other authors, because we assume the 
expectations Pjl and ~j2 depend only on the 
unit j and not on the other units in the 
sample. 

To give an expression for the variances of 
Yt(1) and Yt (2), it only remains to find the 
eovariance between Ytl and Yt2 " Towards 
this end, let 

~1 - T ~jl/nl , 
Jes I 

~2 = T. U j 2 / n  2 , 
jes 2 

dtl = Ytl - Z 2 ' 

and dt2 : Yt2- ~2" Then it can be shown that 

v12 = Cov{Ytl,Yt2 } = C o V { ~ l , ~ 2 } + C o v { d t l , d t 2 }  

= -S~I~2/N+P 12°dl°d2, (3.5) 

where 

s : ( . ~ - l ) - 1  
~ lu2  

N 

~. (~ j l -M1)  (~j2-M2) 
] 

and 

N 
Pl2~dlOd2 = N-I(N-I) -I E T. o 

i#j j l i 2  

From (3.3), (3.4), and (3.5) we obtain the 
following e_xpressions for the variances of 
Yt(1) and Yt(2) : 

2 2  2 2  
V{Yt(1)} : (nl/n) Vl+(n2/n) v2+2(nl/n)(n2/n)vl2 

( 3 . 6 )  

2 2 2 2 
) v2+2~0(i-~ 0 • V { Y t ( 2 ) }  : ~ 0 V l + ( 1 - ~ 0  )v12 

( 3 . 7 )  

Our preparation is now complete, and in the 
next section, we minimize the variances subject 
to fixed cost. 

4. Optimum Allocation Results 

Throughout this section we assume the 
sampling fractions n I /N and n 2 /N are 
negligible. Thus, 

2 = S 2 2 
v I i/nl+( Odl/nl ) [ I+( nl-i )p ii ] 

2 
v 2 : S 2/n2+(ad2/n2 ) [l+(n2-1)p 22 ] , 

and 

v12 : Pl2OdlOd2 • 

Our strategy is to first work out the optimum 
allocation in a general framework and then 
specialize to a specific case. 

In the case of (3.6), weights according to 
sample size, if the substitution 

n I - On, n 2 - ( i-@ )n (4.1) 

is made, the allocation problem reduces to 

min(i/n)[@k l+(l-@)k2]+@2k3+(l-@)2k4+2@( i-@ )k 5 
n,@ 

subject to nOc I + n(l - e)c2 < C, and 0 <_ O <_ 
i, where 

2 2 
k I : S + (1 - p ) ~i ddl ii ' 

k2 S 2 2 (1 - p ) 
p2 + °d2 22 ' 

2 
k 3 = OdlPll , 

2 
k 4 = od2P22 , 

k 5 = v12 . (4.2) 

It can be shown that for fixed 8 the objective 
function is a decreasing function of n. This 
implies that the minimum will occur at largest 
n possible, i.e. 

n - C / [@Cl+ (1  - @)c 2] . (4.3) 

With the substitution of (4.3) into the 
objective function, the problem becomes 

min @2d I + @d 2 + d 3 , 
0<@<i 

where 

d I = (Cl-C2)(kl-k2)/C+k3+k4-2k5 

d 2 = c2(kl-k2)/C+k2(Cl-C2)/C-2k4+2k 

d 3 = k4+c2k2/C • 

It is easily seen that the optimal solution is 

416 



@ - 

0 

-d2/2d I if d I > 0 and 0 < -d2/2d I < I, 

0 if d I > 0 and -d2/2d I ~ 0 

or d I < 0 and Clkl+Ck 3 ~ c2k 2 

+ Ck 4 

or d I = 0 and d 2 > 0 , 

i if d I > 0 and -d2/2d I ~ i , 

if d I < 0 and Clkl+Ck 3 ~ c2k 2 

+ Ck 4 , 

if d I = 0 and d 2 < 0 , 

any value 

in [0,i] if d I = 0 and d 2 = 0 . (4.4) 

The special case of uncorrelated 

measurement errors (i.e. P I2 = Pll 
P 2 = 0) is of considerable interest. Given 

thrum conditions, k 3 = k 4 = k 5 = 0, and it 
follows that the minimum occurs at 

@ 

0 

< d2c 2 i if dlC I , 

0 if dlC I > d2c 2 , 

any value in [0,i] if dlC I = d2c 2 . 

(4.5) 

Thus, the optimal solution in this case will 

usually be to carry out the entire survey under 

one set of general conditions or the other. 

In the case of (3.7), optimal weights, the 

problem becomes 

2 
[kl/nO+k3][k2/n(l-O)+k4]-k 5 

min . (4.6) 
n,@ kl/nO+k3+k2/n(1-@)+k4-2k5 

subject to cln@ + c2n(l - @) < _ C, and 0<@<I. 
We can show this is a decreasing function of n 

by taking a derivative and showing it be less 
than 0, and therefore we may use the 

substitution (4.3). In this case the problem 
reduces to 

2 
[bl+b2/O][b3+b4/(l-O)]-k 5 

min bl+b2/O+bg+b4/(l_O)_2k 5 , 
0<@<i 

_ _ 

where 

b I = k I ( Cl-C 2 )/C+k 3 , 

b 2 = klCl/C 

b 3 = k2(c 2 - Cl)/C + k 4 , 

b 4 = k2Cl/C • 

Setting 

fl(@) : b I + b2/@ , 

f2(@) : b 3 + b4/(1 - @) , 

the optimum occurs at the same value of e as 

does the optimum of 

i i 
max + . ( 4.7 ) 

0<@<i fl (@) - k5 f2 (@) - k5 

Taking a derivative of the objective function 

and setting it equal 0, we find the roots of 

the following equation are the stationary 

values" 

02el + @e 2 + e 3 : 0 , (4.8) 

where 

e I : 2(b3-k5)2-b4(bl-k5 )2 , 

e 2 : -2[b2(b3-k5)2+b2b4(b3-k5)+b2b4(bl-ks)] , 

e 3 : b2(b3-k5)2+2b2b4(b3-k5)+b2b2-b4b2 • 

The maximum in (4.7) must occur at one of the 
roots of (4.8) or at 0 or at i. These four 

values can be calculated and the maximum found. 

In general this characterization seems to be 
the easiest to apply of those we have 

investigated. 

It is not particularly easy to obtain the 

solution for the special case PI2 : Pll = 
P22 = 0 from the above characterization. 
However, the original problem can be written 

(kl/nl)(k2/n2) 
rain 

nl,n 2 k!/n I + k2/n 2 

subject to c I n I + c2n 2 ~ C, and nl, n 2 h 0. 
The solution of this problem can be obtained as 

the solution of 

nl n2 
max + ~ 

nl'n2 k~l k2 

subject to c I n I + c2n 2 <_ C and nl, n 2 >_ 0. 
This linear programming problem is solved by 
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i) n I = 0, n 2 = C/c 2 if c2k 2 < Clk I , 

ii) n I = C/Cl, n 2 - 0 if c2k 2 > Clk I , 

iii) any feasible nl, n 2 if c2k 2 = Clk I . 

Clearly this is equivalent to (4.5) and again 

we would expect to use one source or the other 
for the whole survey. 

While our work here has been done for 

continuous n I and n2, it should be realized 

that these variables are discrete and therefore 
may not exactly achieve the optimal values. 

However, the variances (objective functions) 

are not particularly ill-behaved for values 
near the optimal values and as a result we feel 

it is quite safe to use integer values for n I 

and n 2 which are close to optimal. 

5. Optimum Allocation for a Model 

with Interviewers 

In this section we briefly consider a simple 

situation where the presence of correlated 

measurement errors is solely due to the effects 

of interviewers. We assume that a large 

population K of interviewers is available for 

the survey. A simple random sample of k 
interviewers is selected without replacement, 

and of these k I are assigned to carry out the 
interviewing under conditions G I and k 2 = k - 

k I under conditions G 2 . We select k 
independent simple random samples without 

replacement from the target population, each of 

size m. These samples are assigned to the 
selected interviewers. Thus, each 

interviewer's work-load is equal, and the total 
sample size is n = km units. 

The question we shall be addressing here is 

the following: What is the optimum allocation 
of the k interviewers (and hence the sample) to 

the two sources, G I and G 2 , such that the 
estimator variance is minimized subject to 

fixed cost Clklm + c2k2 m ~ C? 

Assuming that the measurement errors of units 

enumerated by different interviewers are 

uncorrelated ; that sampling error is 

uncorrelated with measurement error; and that 

the sampling fraction k/K is negligible, it can 

be shown that the covariance v 12 is 
approximately zero and that the variances 

of Y tl and Y t2 are of the form v~ = al/k I and 
v~ = a 2 /k 2 , where a I and a 2 are population 
parameters independent of the sample sizes k 

i 
and k 2. 

It follows that the present allocation 
problem is mathematically equivalent to the 

special case of uncorrelated measurement errors 

studied in section 4. By the solution obtained 

there, we conclude that the optimum allocation 

for either estimator will usually be to conduct 

the entire survey under one set of conditions 
or the other. Specifically, the solution is 

. = 0 k 2 = C/c m i: ) k I , 2 

ii) k I = C/Clm , k 2 = 0 

iii) any kl, k 2 with 

c~mk I + c2mk 2 = C 

if c 2 a 2 < c I a I 

if c2a 2 > cla I 

if c 2a 2 = c la I . 

Once again, this solution is somewhat 

unsatisfactory because it assumes k I and 

k 2 are continuous, whereas in practice they are 

integer valued. This problem is more important 
here than it was in section 4, because now each 

unit change in k I or k 2 transfers a block of m 
sampling units from one source to the other. 

Nevertheless, we feel that by rounding the 
above solution to the nearest integer values of 

k i and k 2 we achieve a useful allocation 
which is close to optimum. 

6. Discussion 

There are a number of extensions of the work 

presented in sections 4 and 5. First, if there 

is a net nonzero bias, then we would want to 

allocate based on a minimum mean square error 

(MSE) criterion, rather than on minimum 

variance. Let B I = HI _ ~o and B 2 = M2 - 

?o denote the biases of Ytl and Yt2, 
respectively. Then, the minimum MSE allocation 

is the allocation given in sections 4 

and 5, provided we redefine k 3 = ~iPl I + 

B~,k4 = ~2P22 + B 2, and k 5 = v12 + BIB2. 

Second, although our work was for the case of 

the sample mean with simple random sampling, 

the allocation results easily generalize to a 

wider class of problems. Specifically, let 01 

denote an arbitrary estimator (of an arbitrary 

parameter 0 ) computed from the sample 

enumerated under conditions G I , and 02 

denote the estimator under conditions G 2 . 
Assume that the variances and covariance are of 

the form V(~ =^kl/n I + k3, V~O 2} = k2/n 2 + k4 ' 

and CoV{@l, 02 ~ = k5' where k I, k 2, k 3, k 4, 
and k 5 are population parameters not dependent 

on the sample sizes. Aside from these 

restrictions, we leave the nature of the 

sampling design unspecified. Then, the optimum 
allocation can be obtained from (4.4) or (4.8), 

^ 

depending on how we weight the estimators 01 

and 02 . If k 3 = k 4 = k 5 - 0, i.e. the 
estimators are uncorrelated and the variances 

are inversely proportional to the sample sizes, 

then the optimum allocation is to carry out the 

entire survey under one set of conditions or 
the other. 

Finally, we look at the allocation problem 

when the survey may be conducted under any of 

p ~_ 2 sets of general survey conditions. Let @~ 

(~= i, ..., p) denote the estimators derived 
under the various general conditions, and 

consider the estimator @ = ~7 weOe, where ~we~ 

is a~ arbitrary weighting~s~heme (with w~ > 0 

and ~:~ w e = i) which puts weight i on source e 

if ~e ~ total allocation is to that source. 
Assume that the variance of 0 is of the form 
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P w 2 2 
V{ 0] : Z o /n , 

~:l 

where a~ is a population parameter independent 
of the sample sizes. Let the cost function be 
C = ~l.cene. Then, it can be shown that the 
variance is minimized subject to fixed cost 
by taking the single source for which 
o~c~/C is a minimum. 

The allocation results obtained here are 
useful in that they provide a rational means of 
choosing between (or combining) survey 
alternatives. To apply the results, we only 
require knowledge of the per unit costs of the 
alternative procedures and the moment 
properties of the associated measurement 
errors. 

An important application of the allocation 
results is to the question of telephone versus 
personal interviewing. The trend in survey 
research seems to be towards more telephone 
interviewing, in many cases computer-assisted 
telephone interviewing. This trend is 
precipitated, at least partially, by the desire 
of survey sponsors to use the significant cost 
advantages of telephone interviewing. We feel, 
however, that the decision to use the telephone 
or any other survey procedure should not be on 
the basis of cost alone, but on both cost and 
accuracy considerations. Such improved 
decision making can only occur in an 
environment where more is known about the 
measurement errors associated with the 
alternative survey procedures. 
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