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SUMMARY 2. TWO GROUPS 

The merits of a modified method of applying 
the Jack-knife procedure are evaluated through a 
model. 

i. INTRODUCTION 

Quenouille's (1951) method of bias reduction, 
popularly known as the Jack-knife procedure, has 
been successfully applied to increase the effi- 
ciency of estimators. Let (X,Y) denote the popu- 
lation means of two characteristics (x,y) and 
(x,y) denote the means of a random sample of size 
n. For estimating R = (Y/X), Durbin (1959) 
compared the classical estimator 

P,- Y (1) 
£ 

and the Jack-knife estimator 
__ ! 

y (g-l) X yD (2) 
R* = g E g x=T., 

J 
' )  a r e  t h e  means w i t h  g = 2 g r o u p s .  In  ( 2 ) ,  (x , y j  

o b t a i n e d  by d e l e t i n g  t h e  ( n / g )  o b s e r v a t i o n s  o f  
t h e  j t h  g r o u p .  S u b s e q u e n t l y ,  f o r  e s t i m a t i n g  t h e  
p o p u l a t i o n  mean Y, i n  Rao (1969)  and i n  Rao and 
Rao ( 1 9 7 1 ) ,  t h e  c o r r e s p o n d i n g  e s t i m a t o r s  

t I = RX (3) 

= ~ + 1~ (g-x--) ( 3 a )  
and 

t2  = ~*X- (4) 

were considered. The estimator with the expres- 
sion in (3a) is of the 'regression type' and it 
suggests the possibility of replacing R by other 
suitable estimators. In this paper, for Y we 
consider 

t 3 = ~ + R*(X-x). (5) 

The investigations in the above articles are 
based on the model 

Yi = a + Bxi + si, (6) 

(i = l,...,n), where s i has mean zero and 

variance 6x £ (0<£<2) and is uncorrelated with sj. 

Further it is assumed that the size of the popu- 
lation is large and x has the Gamma distribution 
with parameter h. In Section 2, we present the 
biases and the Mean Square Errors (MSE's) for the 
estimators for the case of g = 2 groups. The 
results show that t 3 is more efficient than t 2. 

Encouraged with the results for two groups, 
we compared the efficiencies for g = n groups; 
the biases and MSE's of the estimators for this 
general case are given in Sections 3 and 4. 
Summary of the investigation is given in Section 
5. Two major conclusions are that in general t 

3 

is more efficient than t 2 and it is superior to 

t I for a wide range of the values of a and d. 

2.1. Biases of the estimators 

Writing the mean of x as E(x) = ~ and that of 
y as E(y) = ;y, from the model in (6), the para- 

meter that is being estimated is 

~y = ~ + 8; • 

The biases of t and t_ are derived by Durbin 
(1959) and the autholr in Ra~ (1969) as 

1 
B - ~ ( 7 )  

1 (u-i)  
and 

2 
B2 = - ( u - 1 ) ( u - 2 )  a '  (8) 

where  u = nh .  From (5) and ( 6 ) ,  

2 1 (~i ~2 ) -- t3 - ;Y = ~[x- x 1 --+ ] (>-x) 

-- 1 el e2 

+ E +  [ 2 ~ _ - ) - ( ~ 1 - 1  + ~72 ) ]  ( > - ~ ) .  (9) 

In (9), the subscripts 1 and 2 refer to the two 
groups and ~ is the mean of e. for the entire 

1 

sample. From (9), the bias in t 3 is 

B 3 = E ( t 3 - ~ y  ) 

2 u u + 1 u 
= (u_-7]- - 1) - u--2- ~ - ( 1  + u_-Jl ~ 

u - 3 
= a . (10) 

( u - l )  ( u - 2 )  

From (7), and (8) and (i0), we make the 
following observations" IB21 and B 3 are smaller 

than BI, and I B21 is smaller than B 3 unless u is 

five or less. 

2.2. MSE's of the estimators 

The MSE's M 1 and M 2 of t I and t 2 are derived 

by the author in Rao (1969) as 

2 
2 u+ 2 u 

M 1 = a ( u - 1 ) ( u - 2 )  + 6 n ( u ' - l ) ( u ' - 2 )  G (11)  

and 
2 u3-5u2+l 2u+16 

M 2 =~ 
( u - l )  ( u - 2 )  2 ( u - 4 )  

2 
+ 6 u " ' [u2+6u~-7u+9£2-27£+18)  G (12) 

n ( u ' - i )  (u ' -2)  (u' +Z-2) (u'+~-4) ' 

where u' = (u+£) and G = F(h+t)/Fh. Durbin 
derived (ii) and (12) when £ is equal to zero. 

From (9) the MSE of t 3 is 

= x - E -+ x 2 (u-r) 
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+ E 
g 1 (e_l_l + e_~2)]2 2 + [- - (~-xD 

~2 ~ xl x2 

7 e2 
+ 2e [2 x - } ( ~ ~ +  ~72) ] (p- 

2 ] 
2 I 4 (u+2) . u -u-6 4 (u+2) 

= a ( u - i )  ( u - 2 )  " ( u - 2 ) 2 ( u - 4 )  ( u - 2 )  2 

+ ~--n ~ + . . . .  ~u+(/-1) ( £ -2 )  1 (u' 1) (u ' -2)  
i 

4 1 1 ~ + ( u ' + / - 2 ) ( u ' - 2 )  + 2 ( / -1 )  (.u 2 1 u '+/22 

2 u3- 6u2+ 3u+ 38 

(u- 1 ) (u- 2 ) 2 (u-4) 

+ 6G[u4+2 (21-3)u3+(212-61+5)u 2 

-2(1-1) (1-2) (21-5)u+(u-1)2(u-2)2-J / 

n ( u ' - l )  (u ' -2 )  (u '+ / -2 )  ( u ' + / - 4 ) .  (13) 

From (ii) and (12), as was given by the author in 
Rao (1969), 

2 u(u-16) 
M1 - M2 = a 2 

(u- i )  (u-2) (u-4) 

+ 6 
3 u (1 -2 / ) -5u  2( / -1)  ( / -2)  

n ( u ' - l )  (u ' -2)  (u' +/-2) (u' +/-4) (14) 

From (11) and (13), 

2 (u+2) (2u-11) 
M1 - M3 = ~ 2 

2 (u- i )  (u-2) (u-14) 

+ 6G[(2£2-6/+3)u2+2(l-1)" ( l -2)  (2Z-5)u 

- (u-1)2(u-2) 2J / 

n (u ' -1)  (u ' -2)  (u' +l-2) (u' +l-4)  (is) 

and from (12) and (13) 

2 (u+ll)  
M2 - M3 = a (u- l )  (u-2) (u-4) 

3+ 2 + ~G[(2/-1)u (7/2-21/+13)u 

+2(1-1)(1-2)(21-5)u-(l-1)2(-2) 2 ] / 

n ( u ' - l )  (u ' -2)  (u '+ / -2 )  (u '+ / -4 )  (16) 

From (14) - -  (16), we draw the  fol lowing 
conclusions" 

(i) As Durbin pointed out, for the case of 
£ = 0, t 2 is more efficient than tl when u > 16, 
that is, the coefficient of variation of x (CV) 
is less than 25 percent. For the same case, t3 

is more efficient than t I if u > 7, that is, 
the CV is less than 40 percent 

(ii) For the case of 0 < £ < (½), tl is 
more efficient than t2 if the CV is less than 
25 percent, but t3 is more efficient than tl 
if the CV is less than 30 percent (u > 13). 

(iii) When a = 0 and 1 = 1 or 2, t2 and t3 
have larger MSE's than tl • However, when a # 0 
and 1 = i, t2 is more efficient than tl if 

C 2 - (6/n) < u-16 
a2 (u-2) (u-4) 

and t 3 is superior to t I if 

C 2 < (u+2) (2u- l l )  
2(u-2)(u-4) " 

Similar limits for C 2 can be found for the other 
values of 1 . 

(iv) The estimator t 3 is superior to t 2 

when a # 0 and 1 lies between zero and two. 

3. BIASES AND MSE'S WHEN g = n 

The biases and MSE's of t I and t 2 are 

derived in Rao and Rao (1971). The procedure of 
deriving them is given in Rao and Webster (1966) 
and by the author in Rao (1974). Here we present 
the biases and MSE's of the three estimators with 
some detail. 

3.1. Biases of the estimators 

Let r, rj, s and s.j denote (l/x), (i/x~)~ , 

(e/x) and (e'j/x~)j where x'j and e'j are the means 

of the k = (n-l) observations. From (3) -- (6), 

t I - >y = a(r~-l) + s>, (17) 

t2- ~y = a{[nr-(n-l)r]~-li + Ins-(n-l)~] ~, (18) 

and 

t 3 - py = ~[nr-(n-l)~ (~-x) 

+ e + [ns-(n-l)s] (la-x), (19) 

where nr = 2r. and ns = Zs.. 
J J 

Denoting nh and (n-l)h by u and v, we find 
m 

that the expectations of r, r. and xr. are 
] J 

n 

a I - u-I 
(20) 

and 

k 
a 2 - v-1 

k(u-1) 
a 3 = n(v-1)  

(21) 

(22) 
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From (17) -- (22), the biases of tl,t 2 and t 3 can 
be written as 

1 
B 1 = ~ c, , ( 2 5 )  

1 
B2 = -  ( u - 1 ) ( v - 1 )  a , (24)  

nv-2n+l 
B3 = n ( u - 1 ) ( v - 1 )  a . (25) 

We notice that IB21 and B 3 are smaller than 

B I, and ]B21 is smaller than B 3. 

3.2 MSE's of the estimators 

For finding the MSE's from (17) - (19), here 
we give the expectations of the different terms; 
details of the derivations are available with us. 
Let I(a,b,c) denote the expectations of 

-i -i 
(XI+X3) (X2+X3) , where XI,X 2 and X 3 are inde- 

pendent Gamma variates with parameters a, b and 
2 2 

c. The expectations of r ,rj, rjr k and rrj are 

2 
n 

a4 = ( u - l )  (u -2 )  ' (26)  

2 
k 

(27) as = ( v - l )  ( v -2 )  

and 

2I , a 6 = n [h h ,  (n-2)l~_l (28) 

nk 
a ,  = . (29) 

(u -2)  ( v - l )  / 

- -  - - 2  
Simil__arly, the averages of (xrj) 2, x2rjrk, xrj 
and xrjr k a r e  

2 
a8 [nk__) ( u - i )  (u -2)  

= ( v - l )  ( v - 2 )  ( s o )  
" "3 

(k) eln h [h h+2 (n-g)h-l}(31) a 9 = ~ + ~ + h ( h + l ) I  , , 
L J 

k 2 (u -2 )  
a l0  - n ( v - l )  (v -2 )  (32) 

and F " 

k2 j  1 [h h+ l  ( n - 2 ) h ]  ;; a l l  = ~ ".v-1 + h i  , , ~ (33) 

Deno te  (u+£) by u '  and (v+£) by v ' .  Ave r -  
ages  o f  t h e  e x p r e s s i o n s  i n v o l v i n g  s and s .  a r e  as  

J 
f o l l o w s .  A l l  t h e  t e r m s  s h o u l d  be  m u l t i p l - e d  by 
6G, where  G = r ( h + t ) / F h ,  as d e f i n e d  e a r l i e r .  The 

2 s k and ss  k a r e  e x p e c t a t i o n s  o f  s 2 ,  s j ,  s j  

n 
dl  = ( u ' - l ) ( u ' - 2 )  ' (34) 

k 
d2 = ( v ' - l ) ( v ' - 2 )  ' (35) 

d 3 = ( n - 2 ) I [ h , h ,  ( n - 2 ) h + £ ]  (36) 

and 

k 
d4 = ( v ' - l )  ( u ' - 2 )  (37) 

the averages of e 2 -2 2 x2sjsk and Similarly , , xsj, 
x e s. are 

J 
1 

d5 = --n ' (38) 

and 

k ( u ' - l )  ( u ' - 2 )  (39) 
d 6 =  2 

n ( v ' - l )  ( v ' - 2 )  

h h d 7 _  (n -2 )  1 + . + 
n 2 V' 1 7 

+ h ( h + l )  I [ h , h + 2 ,  ( n - 2 ) h + l ] )  (40) 

k ( u ' - l )  (41) d 8 = 
n2 ( v ' - l )  

- - 2  - - 2  -- 
The a v e r a g e s  o f  xs , x s j ,  x s j s  k and e s j  a r e  

1 
d 9 -  ( u ' - l )  ' (42) 

d l l  

and 

_ k ( u ' -  2 )  ( 4  3 )  
all0 n ( v ' - l ) ( v ' - 2 )  ' 

! 

( n - 2 )  i 1 . . . .  
n r ' - i  + h I L h , h + l ,  (n -2 )h+£J  ~ (44) 

k 1 
d12 - n ( v ' - l )  " (45) 

From (17)--(22) and (26)--(45), the MSE's of 
tl, t 2 and t 3 can be expressed as follows" 

and 

where 

M 1 = MSE(tl ) = a2Al + 6 DI, (46) 

M 2 = MSE(t2)  = a2A 2 + 6 D2, (47) 

M 3 = MSE(t3) = a2A 3 + 6 D3, 

A 1 = h2a 4 + 1- 2hal, 

(48) 

D 1 = h2dl • 

-_ + k 2 + k 3 h 2 
A2 (n2a4 n-- a5 n-- a6 - 2nka7) 

and 

+ 1 - 2(na I + ka2)h, 

= + k 2 + k 3 
D 2 (n2dl -if- d 2 -n- d 3 - 2nkd4)h 2 ; 

= + k 2 k 3 h 2 
A3 (n2a4 -6- a5 + a6 - 2nka7 ) n 

+ + k2 + k 3 
D3 = 65 !n2dl  -n- d2 n-- d3 - 2nkd4]h2 
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k 2 + k 3 
+ !n2d5 + -n-d6 T d 7  - 2nkd8j 

+k 2 +k 3 
-2[n2d9 --n dlo T d l l -  2nkdl2~h 

+ 2End 9 - kdl2"~h- 2~nd 5 - kd8- ]. 

4. RELATIVE EFFICIENCIES 

For values of n ranging from 5 to 50 and h 
from 1 to 4, we have computed the MSE's derived 
in the previous section on CDC 6600 with double 
precision. We present them in Table 1 for some 
values of n and h. 

The three MSE's can be expressed as 

M i = (Ai/nc2+Di)6 , (49) 

2 
where c = - - -(6/n~ 2) as defined earlier. We note 
that c is the coefficient of variation of y in 
the model 

Yi = ~ + ei (50) 

with E(s.) = 0 and V(s~) = 6. In practical situ- 
ations i~ may be possible to have some knowledge 
of c. We computed the MSE's in (49) for c rang- 
ing from (~) to 2. The following conclusions 
can be drawn from our investigation. 

(i) When ~ = 0 and 1 = 1 or 2, the classical 
estimator is more efficient than t 2 and t3, for 

these cases, the difference between the MSE's of 
t I and t 3 is negligible. 

(ii) When ~ = 0 and 1 = 0, t 2 is more effi- 
cient than t 3 which in turn is more efficient 
than t I . 

(iii) The result in (ii) for 1 = 0 holds 
even when ~ # 0 for c smaller than 2. 

(iv) When ~ # 0 and 1 = 1 or 2, t 3 is more 

efficient than t I and t 2 when c is smaller than 

2. For these cases t 2 may not be more efficient 

than t I . 
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TABLE i. MSE's of tl, t 2 and t 3 when g = n; original values multiplied by i000. 

2 
Coefficients of a are given below the values for the coefficient of 6 when I = 0. 

n= i0 

n= 15 

n = 20 

n= 25 

n= 30 

D 1 
A 1 

D 2 
A 2 
D 3 
A 3 

D 1 
A 1 
D 2 
A 2 
D 3 
A 3 

D 1 
A 1 
D 2 
A 2 
D 3 
A 3 

D 1 
A 1 
D 2 
A 2 
D 3 
A 3 

D 1 
A 1 
D 2 
A 2 
D 3 

A 3 

l = O  l = l  l = 2  

h ~ ~ =  1 . . . . . . . . . . .  h = 2 ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  h =-~3 h~--= 1 h = 2 ~  h = 3~ :h  = 1 h = 2 h = 3 

138.89 116.96 110.84 iii.ii 210.53 310.35 181.82 571.43 1161,29 
166.67 64.33 39.41 
112.71 105.81 103.80 114.08 212.46 311.98 220.89 632.58 1243.87 
132.39 56.50 36.06 
133.25 115.79 110.35 111.41 210.62 310.40 182.45 571.78 1161.55 

132.55 57.77 36.74 

82.42 73.89 71.35 71.43 137.93 204.55 125.00 387.10 782.61 
93.41 39.41 24.84 
71.65 69.09 68.27 72.20 138.46 205.00 142.60 414.15 818.94 
78.35 35.94 23.34 
60.92 73.56 71.21 71.48 137.95 204.56 125.14 387.17 782.66 
80.65 36.74 23.73 

58.48 53.98 52.60 52.63 102.56 152.54 95.24 292.68 590.16 
64.33 28.34 18.12 
52.69 51.33 50.88 52.94 102.78 152.73 105.18 307.85 610.50 
56.04 26.40 17.28 
57.88 53.85 52.54 52.65 102.57 152.55 95.28 292.71 590.18 
57.76 26.91 17.51 

45.29 42.52 41.65 41.67 81.63 121.62 76.92 235.29 473.68 
48.91 22.11 14.25 

41.69 40.84 40.56 41.82 81.74 121.71 83.30 244.98 486.65 
43.70 20.87 13.72 
45.00 42.45 41.62 41.67 81.64 121.62 76.94 235.30 473.69 
44.93 21.22 13.87 

36.95 35.07 34.47 34.48 67.80 101.12 64.52 196.72 395.60 
39.41 18.12 ii.75 
34.49 33.91 33.72 34.57 67.86 101.18 68.95 203.44 404.59 
35.83 17.26 11.37 
36.78 35.03 34.46 34.49 67.80 101.12 64.53 196.73 395.61 
36.74 17.51 II.48 
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