SUMMARY

The merits of a modified method of applying the Jack-knife procedure are evaluated through a model.

1. INTRODUCTION

Quenouille's (1951) method of bias reduction, popularly known as the Jack-knife procedure, has been successfully applied to increase the efficiency of estimators. Let (\bar{X}, \bar{Y}) denote the population means of two characteristics (x, y) and (\bar{x}, \bar{y}) denote the means of a random sample of size n. For estimating $R=(\bar{Y} / \bar{X})$, Durbin (1959) compared the classical estimator

$$
\begin{equation*}
\hat{\mathrm{R}}=\frac{\bar{y}}{\overline{\mathrm{x}}} \tag{1}
\end{equation*}
$$

and the Jack-knife estimator

$$
\begin{equation*}
\hat{\mathrm{R}}^{*}=g \frac{\bar{y}}{\overline{\mathrm{x}}}-\frac{(\mathrm{g}-1)}{\mathrm{g}} \Sigma \frac{\bar{y}_{\mathrm{j}}^{\prime}}{\overline{x_{j}^{\prime}}} \tag{2}
\end{equation*}
$$

with $g=2$ groups. In (2), $\left(\bar{x},{ }_{j}^{1}, \bar{y}_{j}^{\prime}\right)$ are the means obtained by deleting the (n / g) observations of the jth group. Subsequently, for estimating the population mean \bar{Y}, in Rao (1969) and in Rao and Rao (1971), the corresponding estimators

$$
\begin{align*}
t_{1} & =\hat{R} \bar{X} \tag{3}\\
& =\bar{y}+\hat{R}(X-\bar{x}) \tag{3a}
\end{align*}
$$

and

$$
\begin{equation*}
t_{2}=\hat{R}^{*} \bar{X} \tag{4}
\end{equation*}
$$

were considered. The estimator with the expression in (3a) is of the 'regression type' and it suggests the possibility of replacing R by other suitable estimators. In this paper, for \bar{Y} we consider

$$
\begin{equation*}
t_{3}=\bar{y}+\hat{R}^{*}(\bar{x}-\bar{x}) \tag{5}
\end{equation*}
$$

The investigations in the above articles are based on the model

$$
\begin{equation*}
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i} \tag{6}
\end{equation*}
$$

($\mathrm{i}=1, \ldots, n$), where ε_{i} has mean zero and variance $\delta x^{\ell} \quad(0<\ell \leq 2)$ and is uncorrelated with ε_{j}. Further it is assumed that the size of the population is large and x has the Gamma distribution with parameter h. In Section 2 , we present the biases and the Mean Square Errors (MSE's) for the estimators for the case of $g=2$ groups. The results show that t_{3} is more efficient than t_{2}.

Encouraged with the results for two groups, we compared the efficiencies for $g=n$ groups; the biases and MSE's of the estimators for this general case are given in Sections 3 and 4 .
Summary of the investigation is given in Section 5. Two major conclusions are that in general t_{3} is more efficient than t_{2} and it is superior to t_{1} for a wide range of the values of α and δ.

2. TWO GROUPS

2.1. Biases of the estimators

Writing the mean of x as $E(x)=\mu$ and that of y as $E(y)=\mu_{y}$, from the model in (6), the parameter that is being estimated is

$$
\mu_{y}=\alpha+\beta \mu
$$

The biases of t_{1} and t_{2} are derived by Durbin (1959) and the author in Rao (1969) as

$$
\begin{equation*}
\mathrm{B}_{1}=\frac{1}{(\mathrm{u}-1)} \alpha \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{2}=-\frac{2}{(u-1)(u-2)} \alpha \tag{8}
\end{equation*}
$$

where $u=n h . \quad$ From (5) and (6),

$$
\begin{align*}
t_{3}-\mu_{y} & =\alpha\left[\frac{2}{\bar{x}}-\frac{1}{x_{1}}\left(\frac{1}{\overline{x_{1}}}+\frac{1}{\bar{x}_{2}}\right)\right](\mu-\bar{x}) \\
& +\bar{e}+\left[2 \frac{\overline{\mathrm{e}}}{\bar{x}}-\frac{1}{2}\left(\frac{\bar{e}_{1}}{\overline{\mathrm{x}}_{1}}+\frac{\overline{\mathrm{e}}_{2}}{\overline{\bar{x}_{2}}}\right)\right](\mu-\overline{\mathrm{x}}) . \tag{9}
\end{align*}
$$

In (9), the subscripts 1 and 2 refer to the two groups and \bar{e} is the mean of e_{i} for the entire sample. From (9), the bias in t_{3} is

$$
\begin{align*}
B_{3} & =E\left(t_{3}-\mu_{y}\right) \\
& =\left[\left.2\left(\frac{u}{u-1}-1\right)-\frac{u}{u-2}+\frac{1}{2}\left(1+\frac{u}{u-2}\right) \right\rvert\, \alpha\right. \\
& =\frac{u-3}{(u-1)(u-2)} \alpha \tag{10}
\end{align*}
$$

From (7), and (8) and (10), we make the following observations: $\left|B_{2}\right|$ and B_{3} are smaller than B_{1}, and $\left|B_{2}\right|$ is smaller than B_{3} unless u is five or less.

2.2. MSE's of the estimators

The MSE's M_{1} and M_{2} of t_{1} and t_{2} are derived by the author in Rao (1969) as

$$
\begin{equation*}
M_{1}=\alpha^{2} \frac{u+2}{(u-1)(u-2)}+\delta \frac{u^{2}}{n\left(u^{\prime}-1\right)\left(u^{\prime}-2\right)} G \tag{11}
\end{equation*}
$$

and

$$
\begin{gather*}
M_{2}=\alpha^{2} \frac{u^{3}-5 u^{2}+12 u+16}{(u-1)(u-2)^{2}(u-4)} \\
+\delta \frac{u^{2}\left(u^{2}+6 u \ell-7 u+9 \ell^{2}-27 \ell+18\right)}{n\left(u^{\prime}-1\right)\left(u^{\prime}-2\right)\left(u^{\prime}+\ell-2\right)\left(u^{\prime}+\ell-4\right)} G, \tag{12}
\end{gather*}
$$

where $u^{\prime}=(u+\ell)$ and $G=\Gamma(h+t) / \Gamma h$. Durbin derived (11) and (12) when ℓ is equal to zero.

$$
\begin{aligned}
& \text { From (9) the MSE of } t_{3} \text { is } \\
& \left.\qquad M_{3}=\alpha^{2} E \left\lvert\, \frac{2}{\bar{x}}-\frac{1}{2}\left(\frac{1}{\bar{x}_{1}}+\frac{1}{\bar{x}_{2}}\right)\right.\right]^{2}(\mu-\bar{x})^{2}
\end{aligned}
$$

$$
\begin{align*}
& +E\left\{\bar{e}^{2}+\left[2 \frac{\overline{\mathrm{e}}}{\overline{\mathrm{x}}}-\frac{1}{2}\left(\frac{\overline{\mathrm{e}}_{1}}{\overline{\mathrm{x}}_{1}}+\frac{\overline{\mathrm{e}}_{2}}{\overline{\mathrm{x}}_{2}}\right)\right]^{2}(\mu-\overline{\mathrm{x}})^{2}\right. \\
& \left.+2 \overline{\mathrm{e}}\left[2 \frac{\overline{\mathrm{e}}}{\overline{\mathrm{x}}}-\frac{1}{2}\left(\frac{\overline{\mathrm{e}}_{1}}{\overline{\mathrm{x}}_{1}}+\frac{\overline{\mathrm{e}}_{2}}{\overline{\mathrm{x}}_{2}}\right)\right](\mu-\overline{\mathrm{x}})\right\} \\
& =a^{2}\left[\frac{4(u+2)}{(u-1)(u-2)}+\frac{u^{2}-u-6}{(u-2)^{2}(u-4)}-\frac{4(u+2)}{(u-2)^{2}}\right] \\
& +\frac{\delta}{n}\left\{1+[u+(\ell-1)(\ell-2)]\left[\frac{5}{\left(u^{\prime}-1\right)\left(u^{\prime}-2\right)}\right.\right. \\
& \left.\left.+\frac{4}{\left(u^{\prime}+\ell-2\right)\left(u^{\prime}-2\right)}\right]+2(\ell-1)\left(\frac{2}{u^{\prime}-1}-\frac{1}{u^{\prime}+\ell-2}\right)\right\} G \\
& =\alpha^{2} \frac{u^{3}-6 u^{2}+3 u+38}{(u-1)(u-2)^{2}(u-4)} \\
& +\delta G\left[u^{4}+2(2 \ell-3) u^{3}+\left(2 \ell^{2}-6 \ell+5\right) u^{2}\right. \\
& \left.-2(\ell-1)(\ell-2)(2 \ell-5) u+(u-1)^{2}(u-2)^{2}\right\rfloor / \\
& n\left(u^{\prime}-1\right)\left(u^{\prime}-2\right)\left(u^{\prime}+\ell-2\right)\left(u^{\prime}+\ell-4\right) . \tag{13}
\end{align*}
$$

From (11) and (12), as was given by the author in Rao (1969),

$$
\begin{array}{r}
M_{1}-M_{2}=\alpha^{2} \frac{u(u-16)}{(u-1)(u-2)^{2}(u-4)} \\
+\delta \frac{u^{3}(1-2 \ell)-5 u^{2}(\ell-1)(\ell-2)}{n\left(u^{\prime}-1\right)\left(u^{\prime}-2\right)\left(u^{\prime}+\ell-2\right)\left(u^{\prime}+\ell-4\right)} \tag{14}
\end{array}
$$

From (11) and (13),

$$
\begin{gather*}
M_{1}-M_{3}=\alpha^{2} \frac{(u+2)(2 u-11)}{2(u-1)(u-2)^{2}(u-14)} \\
+\delta G\left[\left(2 \ell^{2}-6 \ell+3\right) u^{2}+2(\ell-1)(\ell-2)(2 \ell-5) u\right. \\
\left.-(u-1)^{2}(u-2)^{2}\right] / \\
n\left(u^{\prime}-1\right)\left(u^{\prime}-2\right)\left(u^{\prime}+\ell-2\right)\left(u^{\prime}+\ell-4\right) \tag{15}
\end{gather*}
$$

and from (12) and (13)

$$
\begin{align*}
& M_{2}-M_{3}=\alpha^{2} \frac{(u+11)}{(u-1)(u-2)(u-4)} \\
& +\delta G\left[(2 \ell-1) u^{3}+\left(7 \ell^{2}-21 \ell+13\right) u^{2}\right. \\
& \left.+2(\ell-1)(\ell-2)(2 \ell-5) u-(\ell-1)^{2}(-2)^{2}\right] / \\
& n\left(u^{\prime}-1\right)\left(u^{\prime}-2\right)\left(u^{\prime}+\ell-2\right)\left(u^{\prime}+\ell-4\right) \tag{16}
\end{align*}
$$

From (14) -- (16), we draw the following conclusions:
(i) As Durbin pointed out, for the case of $\ell=0, t_{2}$ is more efficient than t_{1} when $u>16$, that is, the coefficient of variation of \bar{x} (CV) is less than 25 percent. For the same case, $t 3$ is more efficient than t_{1} if $u>7$, that is, the $C V$ is less than 40 percent
(ii) For the case of $0<\ell<\left(\frac{1}{2}\right), t_{1}$ is more efficient than t_{2} if the $C V$ is less than 25 percent, but t_{3} is more efficient than t_{1} if the CV is less than 30 percent ($u>13$).
(iii) When $\alpha=0$ and $\ell=1$ or $2, t_{2}$ and t_{3} have larger MSE's than t_{1}. However, when $\alpha \neq 0$ and $\ell=1, t_{2}$ is more efficient than t_{1} if

$$
C^{2}=\frac{(\delta / n)}{\alpha^{2}}<\frac{u-16}{(u-2)(u-4)}
$$

and t_{3} is superior to t_{1} if

$$
C^{2}<\frac{(u+2)(2 u-11)}{2(u-2)(u-4)}
$$

Similar limits for C^{2} can be found for the other values of ℓ.
(iv) The estimator t_{3} is superior to t_{2} when $\alpha \neq 0$ and ℓ iies between zero and two.
3. BIASES AND MSE'S WHEN $g=n$

The biases and MSE's of t_{1} and t_{2} are derived in Rao and Rao (1971). The procedure of deriving them is given in Rao and Webster (1966) and by the author in Rao (1974). Here we present the biases and MSE's of the three estimators with some detail.

3.1. Biases of the estimators

Let r, r_{j}, s and s_{j} denote $(1 / \bar{x}),(1 / \bar{x} \eta)$, (\bar{e} / \bar{x}) and $\left(\bar{e}_{j}^{\prime} / \bar{x} \bar{j}_{j}^{\prime}\right)$ where \bar{x}_{j}^{\prime} and \bar{e}_{j}^{\prime} are the means of the $k=(n-1)$ observations. From (3) -- (6),

$$
\begin{aligned}
& t_{1}-\mu_{y}=\alpha(r \mu-1)+s \mu, \\
& \text { and }
\end{aligned}
$$

$$
\begin{gather*}
t_{3}-\mu_{y}=\alpha[n r-(n-1) \vec{r}](\mu-\bar{x}) \\
\quad+\bar{e}+[n s-(n-1) \vec{s}](\mu-\bar{x}) \tag{19}
\end{gather*}
$$

where $n \bar{r}=\Sigma r_{j}$ and $n \bar{s}=\Sigma s_{j}$.
Denoting $n h$ and $(n-1) h$ by u and v, we find that the expectations of r, r_{j} and $\overline{x r}_{j}$ are

$$
\begin{align*}
& a_{1}=\frac{n}{u-1} \tag{20}\\
& a_{2}=\frac{k}{v-1} \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{k(u-1)}{n(v-1)} \tag{22}
\end{equation*}
$$

From (17) -- (22), the biases of t_{1}, t_{2} and t_{3} can be written as

$$
\begin{align*}
& \mathrm{B}_{1}=\frac{1}{u-1} \alpha \tag{23}\\
& \mathrm{~B}_{2}=-\frac{1}{(\mathrm{u}-1)(v-1)} \alpha, \tag{24}\\
& B_{3}=\frac{\mathrm{nv}-2 \mathrm{n}+1}{\mathrm{n}(\mathrm{u}-1)(\mathrm{v}-1)} \alpha . \tag{25}
\end{align*}
$$

We notice that $\left|B_{2}\right|$ and B_{3} are smaller than B_{1}, and $\left|B_{2}\right|$ is smaller than B_{3}.
3.2 MSE's of the estimators

For finding the MSE's from (17) - (19), here we give the expectations of the different terms; details of the derivations are available with us. Let $I(a, b, c)$ denote the expectations of $\left(X_{1}+X_{3}\right)^{-1}\left(X_{2}+X_{3}\right)^{-1}$, where X_{1}, X_{2} and X_{3} are independent Gamna variates with parameters a, b and c. The expectations of $r^{2}, r_{j}^{2}, r_{j} r_{k}$ and $r r_{j}$ are

$$
\begin{align*}
& a_{4}=\frac{n^{2}}{(u-1)(u-2)}, \tag{26}\\
& a_{5}=\frac{k^{2}}{(v-1)(v-2)} \tag{27}\\
& a_{6}=n^{2} I[h, h,(n-2) h] \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
a_{7}=\frac{n k}{(u-2)(v-1)} \tag{29}
\end{equation*}
$$

Simi1 $\frac{\text { arly }}{}$, the averages of $\left(\bar{x} r_{j}\right)^{2}, \bar{x}^{2} r_{j} r_{k}, \bar{x} r_{j}^{2}$ and $\bar{x} r_{j} r_{k}$ are

$$
\left.\begin{array}{c}
a_{8}=\left(\frac{k}{n}\right)^{2} \frac{(u-1)(u-2)}{(v-1)(v-2)} \\
a_{9}=\left(\frac{k}{n}\right)^{2} \cdot \frac{n}{k}+\frac{h}{v-1}+h(h+1) I[h, h+2,(n-2) h] \\
a_{10}^{-}=\frac{k^{2}}{n} \frac{(u-2)}{(v-1)(v-2)} \tag{32}
\end{array}\right\}
$$

and

$$
\begin{equation*}
a_{11}=\frac{k^{2}}{n}\left\{\frac{1}{v-1}+h I[h, h+1,(n-2) h]\right\} \tag{33}
\end{equation*}
$$

Denote $(u+\ell)$ by u^{\prime} and ($\left.v+\ell\right)$ by v^{\prime}. 'Averages of the expressions involving s and s_{j} are as follows. All the terms should be multiplied by δG, where $G=\Gamma(h+t) / \Gamma h$, as defined earlier. The expectations of $s^{2}, s_{j}^{2}, s_{j} s_{k}$ and $s s_{k}$ are

$$
\begin{align*}
\mathrm{d}_{1} & =\frac{n}{\left(u^{\prime}-1\right)\left(u^{\prime}-2\right)} \tag{34}\\
d_{2} & =\frac{k}{\left(v^{\prime}-1\right)\left(v^{\prime}-2\right)} \tag{35}\\
d_{3} & =(n-2) I[h, h,(n-2) h+\rho] \tag{36}
\end{align*}
$$

and

$$
\begin{equation*}
d_{4}=\frac{k}{\left(v^{\prime}-1\right)\left(u^{\prime}-2\right)} \tag{37}
\end{equation*}
$$

$\frac{\text { Similarly, the averages of }}{\bar{x}} \overline{\mathrm{e}} \mathrm{e}_{\mathrm{j}}$ are $, \overline{\mathrm{x}}^{2} \mathrm{~s}_{\mathrm{j}}^{2}, \overline{\mathrm{x}}^{2} \mathrm{~s}_{\mathrm{j}} \mathrm{s}_{\mathrm{k}}$ and

$$
\begin{gather*}
d_{5}=\frac{1}{n} \tag{38}\\
d_{6}=\frac{k\left(u^{\prime}-1\right)\left(u^{\prime}-2\right)}{n^{2}\left(v^{\prime}-1\right)\left(v^{\prime}-2\right)} \tag{39}\\
d_{7}=\frac{(n-2)}{n^{2}}\left\{1+\frac{h}{v^{\prime}-1}+\frac{h}{v^{\prime}}\right. \\
+h(h+1) I[h, h+2,(n-2) h+\ell]\} \tag{40}
\end{gather*}
$$

and

$$
\begin{equation*}
d_{8}=\frac{k\left(u^{\prime}-1\right)}{n^{2}\left(v^{\prime}-1\right)} \tag{41}
\end{equation*}
$$

The averages of $\overline{\mathrm{xs}}{ }^{2}, \overline{\mathrm{xs}}_{\mathrm{j}}{ }_{\mathrm{j}}, \overline{\mathrm{xs}}_{\mathrm{j}} \mathrm{s}_{\mathrm{k}}$ and $\overline{\mathrm{es}}_{\mathrm{j}}$ are

$$
\begin{gather*}
d_{9}=\frac{1}{\left(u^{\prime}-1\right)} \tag{42}\\
d_{10}=\frac{k}{n} \frac{\left(u^{\prime}-2\right)}{\left(v^{\prime}-1\right)\left(v^{\prime}-2\right)}, \tag{43}\\
d_{11}=\frac{(n-2)}{n}\left\{\frac{1}{v^{\prime}-1}+h I[h, h+1,(n-2) h+l]\right\} \tag{44}
\end{gather*}
$$

and

$$
\begin{equation*}
d_{12}=\frac{k}{n} \frac{1}{\left(v^{\prime}-1\right)} \tag{45}
\end{equation*}
$$

From (17)--(22) and (26)--(45), the MSE's of t_{1}, t_{2} and t_{3} can be expressed as follows:

$$
\begin{align*}
& M_{1}=\operatorname{MSE}\left(t_{1}\right)=\alpha^{2} A_{1}+\delta D_{1}, \tag{46}\\
& M_{2}=\operatorname{MSE}\left(t_{2}\right)=\alpha^{2} A_{2}+\delta D_{2}, \tag{47}
\end{align*}
$$

and

$$
\begin{equation*}
M_{3}=\operatorname{MSE}\left(t_{3}\right)=\alpha^{2} A_{3}+\delta D_{3} \tag{48}
\end{equation*}
$$

where

$$
\begin{gathered}
A_{1}=h^{2} a_{4}+1-2 h a_{1} \\
D_{1}=h^{2} d_{1} \\
A_{2}=\left(n^{2} a_{4}+\frac{k^{2}}{n} a_{5}+\frac{k^{3}}{n} a_{6}-2 n k a_{7}\right) h^{2} \\
+1-2\left(n a_{1}+k a_{2}\right) h \\
D_{2}=\left(n^{2} d_{1}+\frac{k^{2}}{n} d_{2}+\frac{k^{3}}{n} d_{3}-2 n k d_{4}\right) h^{2} \\
A_{3}=\left(n^{2} a_{4}+\frac{k^{2}}{n} a_{5}+\frac{k^{3}}{n} a_{6}-2 n k a_{7}\right) h^{2}
\end{gathered}
$$

and $D_{3}=d_{5}+\left[n^{2} d_{1}+\frac{k^{2}}{n} d_{2}+\frac{k^{3}}{n} d_{3}-2 a k d_{4}\right] h^{2}$

$$
\begin{aligned}
& +\left[n^{2} d_{5}+\frac{k^{2}}{n} d_{6}+\frac{k^{3}}{n} d_{7}-2 n k d_{8}\right] \\
& -2\left[n^{2} d_{9}+\frac{k^{2}}{n} d_{10}+\frac{k^{3}}{n} d_{11}-2 n k d_{12}\right] h \\
& +2\left[n d_{9}-k d_{12}\right] h-2\left[n d_{5}-k d_{8}\right]
\end{aligned}
$$

4. RELATIVE EFFICIENCIES

For values of n ranging from 5 to 50 and h from 1 to 4, we have computed the MSE's derived in the previous section on CDC 6600 with double precision. We present them in Table 1 for some values of n and h.

The three MSE's can be expressed as

$$
\begin{equation*}
M_{i}=\left(A_{i} / n c^{2}+D_{i}\right) \delta \tag{49}
\end{equation*}
$$

where $c^{2}=\left(\delta / n \alpha^{2}\right)$ as defined earlier. We note that c is the coefficient of variation of y in the model

$$
\begin{equation*}
y_{i}=\alpha+e_{i} \tag{50}
\end{equation*}
$$

with $E\left(\varepsilon_{i}\right)=0$ and $V\left(\varepsilon_{i}\right)=\delta$. In practical situations it may be possible to have some knowledge of c. We computed the MSE's in (49) for c ranging from ($\frac{1}{4}$) to 2 . The following conclusions can be drawn from our investigation.
(i) When $\alpha=0$ and $\ell=1$ or 2 , the classical estimator is more efficient than t_{2} and t_{3}; for these cases, the difference between the MSE's of t_{1} and t_{3} is negligible.
(ii) When $\alpha=0$ and $\ell=0, t_{2}$ is more efficient than t_{3} which in turn is more efficient than t_{1}.
(iii) The result in (ii) for $\ell=0$ holds even when $\alpha \neq 0$ for c smaller than 2 .
(iv) When $\alpha \neq 0$ and $\ell=1$ or $2, t_{3}$ is more efficient than t_{1} and t_{2} when c is smaller than 2. For these cases t_{2} may not be more efficient than t_{1}.

ACKNOWLEDGEMENTS

The author would like to thank Dr. Barbara A. Bailar for her interest in this investigation. This research is partially supported by Grant No. 77-27 from the Bureau of the Census, U.S. Department of Commerce. Thanks to Mrs. Nancy Hufsmith for her skillful and meticulous typing of the manuscript.

REFERENCES

DURBIN, J. (1959). A note on the application of Quenouille's method of bias reduction to the estimation of ratios. Biometrika 46, 477-80.

QUENOUILLE, M.H. (1956). Notes on bias in estimation. Biometrika 43, 353-60.

RAO, J.N.K. G WEBSTER, J.T. (1966). On two methods of bias reduction in the estimation of ratios. Biometrika 53, 571-7.

RAO, J.N.K. \& RAO, P.S.R.S. (1971). Small sample results for ratio estimators. Biometrika 58, 625-30.

RAO, P.S.R.S. (1969). Comparison of four ratiotype estimates under a model. J. Am. Statist. Ass. 64, 574-80.

RAO, P.S.R.S. (1974). Jack-knifing the ratio estimator. Sankhya, Series C, 36, 84-97.

TABLE 1. MSE's of t_{1}, t_{2} and t_{3} when $g=n$; original values multiplied by 1000 .
Coefficients of α^{2} are given below the values for the coefficient of δ when $l=0$.

