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1.

Consider a finite population of vectors com-
posed of L strata, together with a parameter
8= f(Yl,,Yz.,...YL_); Y;. is the average of the
vectors in stratum i and f is a known real-valued
function. Many parameters are of this form: the
combined ratio, the mean of a domain, and the
correlation coefficient are examples. Suppose
that a random sample of size n is taken from each
stratum, with the objective of constructing a
confidence interval for 8. Let yj. be the aver-
age of the vectors sampled from stratum i. Then
a reasonable estimate of @ is f(y .,yz,é...,yL.)=
©(n). Denote the variance of e(n} by o¢(n). If
(6(m)-8)/e2(n) is approximately standard normal,
then a confidence interval for 6 can be construct-
ed by finding an accurate estimate of gz(n). Cur-
rently there are three approaches used to estima-
te gz(n). First, by consideration of the speci-
fic function f it is possible that an estimable
expression (often approximate) can be derived for
Var[f(yl.,yz.,...,yL.)]. Second, by explicit or
numerical calculation of the appropriate partial
derivatives of f, the delta method can be used to
estimate g2(n); see Tepping [7] and Woodruff [8].
Third, there are pseudo-replication methods for
estimating g“(n); see Kish and Frankel [5] and
McCarthy [6]. Jackknife procedures applied to
6(n) provide a fourth approach to comstructing a
confidence interval for 8.

In this paper, an estimator of cz(n) based
on pseudo-replicates is introduced. Some theo-
retical properties of this estimator are derived.
Also the results of simulation experiments are
presented, in which the interv%l based on the
pseudo-replicate estimate of ¢“(n) compared fa-
vorably with three other interval procedures,
Specifically, in Section 2, the problem and nota-
tion of this paper are introduced. In Section 3,
a family of pseudo-replicate estimates of 6 is
defined. An estimator 32(n) is proposed, which
is based on the pseudo-replicate estimates of O,
In Section 4, it is shown that if f(+) is linear,
o%(n)is identical to the standard unbiased esti-
mate of oZ(n-1). Also, a theorem is presented
which suggests that (8(n)-6)//32(n) has approxi-
mately a standard normal distribution. The re-
sults of simulation experiments are presented,
which show the interval based on &% (n) performing
well in comparison to other standard interval pro-
cedures. In Section 5, remarks are made on the
practical use of 5Z(n). Also, the jackknife in-
terval used in the simulation studies behaved er-
ratically relative to the other intervals. This
behavior is displayed.

2.

INTRODUCTION

NOTATION
] In this section, the notation for this paper
is developed. Consider a finite population P of
vectors from R"™divided into L strata. Denote
the mem?ers of P ?y Yijf(¥ijl’¥ij2’""Yijm)"
Here I<i<L and 1<j<Nj; i identifies the stratum
and j a particular vector among the N; which be-
long to stratum i, Denote ENi Yis/N; by Y
j=1tijk/Ng By Yi.p
and denote the mean of the véctors in stratum
i, (Yi,l,Yi.z,;..,Yi,m)' by Y;,. Also define the
matrix Dj by
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N,
i

(Y, Y. ). ,-Y. )
3=1 ijk "i-k ij4 "i-4
w,-D

[Di]kﬂ =

Suppose Z is a vector selected at random from
stratum i. Then E[Z]=Y;, and ((N;-1)/N;)Dj =
Cov[z].

Suppose 8 is an unknown real parameter, where
G=f(Y1,,Y2,,...,YL.) and £(+) is a known continu-
ous function. Consider drawing a random sample
of size n without replacement from each stratum;
denote the vector outcome of draw j from stratum
% by yij=(yij1,yij2,...,yijm)'. An estimate of 8
Ls 6(n)=f(y1.,yp.5-.,y1.); where y; =58 1y, ./n.
Define b(n) and 62(n) by E[8(n)] =0+ b(h) and
Var[@(n)]=02(n), and the matrix ﬁi by

n
P10 Oi3aVip)

° J
D. = .
D31y, @)
0f course, the bias and variance of é(n) depend

on P and f£(+), in addition to n; since P and £(*)
are kept fixed in the results of this paper, this
dependence is not made explicit in the notation,

3. A PSEUDO-REPLICATE ESTIMATE OF cz(n)

In this section, a collection of pseudo-
replicate estimates of 8 is defined for sub-
samples of size (n-1) from the strata samples of
size n. Then two results are developed. First,
the average of the squared differences between
these pseudo-replicates and €(n) equals the pro-
duct of a factor greater than one ang an unbiased
estimate of g2(n-1)(l-p(n)). Here ¢“(n-1) is the
variance of f£(y;,;¥5.5-..¥1.) when the stratum
sample size is (n-1); p(n) is a correlation co-
efficient which will be defined. Second, under
assumptions on the N; and £(+), an explicit ex-
pression for p(n) is derived., As a congequence
of these two results, an estimator of g“(n),
ég(n), is developed.

Imitating McCarthy [6], we proceed to define
a collection of pseudo-replicate estimates of @,
The data generated by drawing a sample of size n
from each stratum can be displayed as follows.

Loy Y2 Vi3l Vi
2

Stratum , Y21 Y92 Y23..Y%2n
Loy Y Y13,V

Denote this data matrix by y. There are t=(n)L
ways to select a subsample of size (n-1) from
each of the rows of y. These subsamples can be
identified by indicating the element in each row
of y that is not selected; we use the vector
(4,6,...,7)'€IRL to denote the subsample which
deletes V1439962 sYLT from y. The vectors
which in this fashion represent all possible sub-
samples are ordered lexicographically and the cor-
responding subsamples are numbered from 1 to t.
Let Yi (i) be the element of row i of y that is not



in subsample j, 1<i<t, Now let (ny, -y, (JQ/(n 1x
Finally define 9 (n)= f(wl ,wz ,...,w ;) for
1 é.]<:t the e (n) are the psauéo repllcate esti-
mates of .
Define R (y) by

Z(e @) - 8(n)) /t

j=1

The magnitude of RZ(y)is an indicator of themag-
nitude of ¢“(n). The following theorem is speci-
fic on this point.

Theorem 3.1 (n/(n-1)) R.(y) S (y) (1+T(y)) vhere
E[SZ(y) =02 (n-1)(1-p(n)) and T(y)>O.

Comments: the random variables Sz(y) and T(y),
and the parameter p(n), are conveniently defined
in the proof of Theorem 3.1, Note in the proof
that §2 (y) is a suffic1ency improvement of an un-
biased estimate of ¢ (n 1) (1-p(n)), and that
T(y) looks as if it should be near zero.

rA(y) =

Proof. Let ék’ for Il<k<n, be the pseudo-repicate
estimate of © corresponding to the subsample of y
obtained by deleting the k-th column of y. The
ek are identically distributed, having the same
digtribution as 8(n-1). Therefore 8+ b(n-1) =
E[Bk] and Var[ek]~02(n 1). By symmetry, the 8y
have common correlatlon, denote it by p(n). De-
note Zk 19k/n by 9 - Standard linear model theory
yeilds that Zk 1(ek-9 )%/ (n-1) is an unbiased es-

timate of ¢ (n 1) (1-p(n)). Write
0 (6-8m)% 0(5-6)" n(8.-6m)’
@ @D L eh I Ten O

There are u=(nl)L data matrices y which can be
constructed from the original y by permuting the
elements in each row of the original y. Averag-
ing the three terms in (3.1) over all these udata
matrices (1<j<u) yields

u n (ék-é(n))2

n
(n-1) . un (3.2)
j=1 k=1
AoaAy2 u o 5 -6 2

u n(8-6)", .E 128 -6m)

=X I 144

- u(n-1) L u n J

j=1 k=1 2 5 -6 )2

=1 k= 1(

Define sz(y) and T(y) in the obvious way so that
the right side of (3.2) equals S2(y) (L+T(y)).
1t is not difficult to show that the left side of
equation (3.2) equals (n/(n—l))Imz(y) ]

Assuming T(y)2 0 and o2(n-1)Zc2(n), Theorem
3.1 suggests

[n/ (n-1)1[R3(y)/ (1-p(n)] (3.3)

as an estimator of cz(n). But the value of p(n)
is not known, and in general depends upon £(-),
n, and P. In this paragraph, an expression for
p(n) is derived under assumgtions on £ and the
N;j. Then an estimator of ¢“(n) is produced by
substituting this expression into (3.3).
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Theorem 3.2 Suppose that £(Yy,,Yp,,...,Yp. ) =

oL 1a:'[ Y;,+a, where a,€R and 2 € R™ for 1<i<L.
i=
Then p(n) is
=T 1 (n-2y &
L” 2 2 7w, %P
i=1 Ni(n—l) (n-1) i
L 1 Ni-(n-l) ' .
, (1) TN 1713
Proof. p(n)= Cor(el,ez), where 9 is defined in

Cov(GT,ez) equals
(ny; -y:5)
i @®-1) . °

the proof of Theorem 3.1.

. L (my..-y.)
cov, Z a! it il

L
LA e 0 R

i=1
Since the draws from different strata are inde-
pendent, this simplifies to

L n n
b) Cov al y,,+ Z a 4 »al yo.+ X oaly.. .
421 - 1742 173 13771 7il =3 i7ij.

(a-1)°
Using Cov(alle,a ylz) for j#4,

this expression further simplifies to the numera-

tor of p(n). Now
Var(e )= Var(e )= Z

]
(l/Ni)aiDiai

= 1 1 yiz)/(n-l)]a
which slmpllfles to the denominator of p(n).

The following theorem gives a useful expression
for p(n), in that it does not involve the Di'

Theorem 3.3 Suppose £(Y7,,Y9.5440,Y7.) =

Cov[(nyi.-

ag+ Iy @ aiY,, as in Theorem 3.2, and N;=N for
1<EiZLY Then® p(n) [(N-n) (n-2)~ 1]/[(n 1) (N-n+1)].
Proof, Simply examine p(n) as given by Theorem
3.2, ®

Suppose that f(+) is approximately linear over
the range of possible values of the random vect-
ors y;. and that stratum sizes are equal. Then,
substituting the result of Theorem 3.3 into
(3.3), we have the following estimator of cz(n).
32(n) - n]R &) N-n+l n+1
p
This estimator will _be called the pseudo-repli-
cate estimator of ¢“(n).

4. RESULTS ON 3§(n)

In this section, three results are pregent-
ed on c (n). First, when £(+) is linear, &%(n)
1s 1dent1cal to the standard unblased estimate of

(n-l) Second, under the assumption of with
replacement sampling, (G(n) -8)//n R.(y) converge
in distribution to a standard normal distribution.
Third, the results of a simulation experiment are
presented in which a confidence interval proce-
dure for 6 based on 8%5(n) performed well in com-
parison to three other interval procedures,

Suppose f(Ylo’Yz-""’YL') =a +2£_1a Y. -
Then cz(n) =y ]'_Cov(yl Ya;, which equals

E_l[(N n)/(Nn} ajDjaj. The standard unbiased
estimate of g4(n) 1s produced by replacing Dj
by Di, yielding



, A
1D1 a; (4.1)

L
N-n
= N a

i=1

=R L

theorem shows that (4.1) is closely
(n).
Theorem 4 1 Suppose f(Yl.:Yz."--’YL ) =

The follow1n§
related to c

agtiy.18iYie- Then c (n) equals
L
n N-(n-1 N-n 1 at
-1 N-n .Z N n 1D1a1 (4.2)
i=1
Proof.

Ehe theorem follows from the identity
R2(y) =X =121 al/(n(n-l)),whlch we proceed to
verify. "By defln1t10n,R2(y) zt ~1®j(m)- 8(n))¥t
yhere 85(n)= ac,+2L 18} (ny.-y, (J))/(n 1) and
8(n)=a, + =i 1a{y;.. With the )/ data matrix y
fixed,
of the

consider the experiment of selecting one

t pgeudo-replicates at random. Denote the
result by 9, Clearly E[G] e(n) so Var[8]= Rz(y)
But it is legitimate to regard the random variabe
© as the pseudo-replicate estimate of © produced
by selecting n-1 vectors at random from each row
of y. Denote by §1' the average of the (n-1)
selected from the i-th row of y. From this point
Var(e) equals

L L

] guny —_ .
‘Z a; Cov(yi,)ai—-'Z a’
i=1 i=

n(n-1) L4

It should be noted that (4.2) simplifies to the
standard unbiastd estimate of cz(n-l). This is
consistent with Theorem 3.1, in light of the fact
that T(y)=0 when f(-) is linear. Theorem 4.1 is
comforting, in that it shows 6%(n) to be a simple
multiple of the standard unbiased estimator of
c“(n), when f(+) is linear.

In this paragraph, a theorem is presented
which suggests that for nonlinear f(-), if n<<N
and n is large, (e(n) Q)A/bp(n) is approximately
normal in distribution.

Theorem 4.2 Suppose that the stratum samples of
size n are _drawn with replacement. Then

(6(n) G)A/nIRZ(y) converges in distribution to a
standard normal distribution, under the following
condition. Regarding f(xl,xz,...x ), X, €ERM, as
a function from R®L to R, £(+) has continuous
partials and second partials in a neighborhood

of x3=Y;,, I<i<L.

Proof. It is well-known that (8(n)- G)A/c (n)
converges in distriBution to a standard normal
distribution. The theorem follows from a lengthy
argument presented by Fenech (3) that cz(n)/n]R y)
converges stochastically to one. ®

Theorem 4.2 suggests that an approximate
100g% confidence interval for 6 is

S() + 2 (8)/55 () %.3)
where P[lN(O,l)lf;Z(ﬁ)}=B. Immediate questions

are: how close is the actual level of confidence
of (4.3) to the nominal 1008%? How does this
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difference compare with those which result with
other standard methods of constructing an inter-
val for ©? Using simulation experiments, these
questions were studied. 1In the remaining para-
graphs of this section, three methods other than
(4.3) which can be used to construct an interval
for © are described, and a simulation experiment
testing the four interval procedures is described
and its results presented.

The three confidence interval methods other
than (4.3) are: the standard method, based on
direct derivation of an estimable expression for
g€(n); the delta method; and the jackknife method.
Specifically g (n)—Var[f(yl,,yz,,...,yL )]. Since
f(-) 1s known, a (usually approximate) expression
for o (n) is derived which can be estimated from
the data. Denoting this estimate by 55(n), the
following is the standard interval for O:

sy +2(Y/6i @) )
In the delta method, an estimate of the variance
of the linear approximation to f£(-) is used to

estimate g(n), yielding

o "2
O(n)j:Z(B)/;d(n) . (4.5)
In the jackknife method, the pseudo-values
9 k—nB(n) (n-l)ek for 1<k<n are regarded as i.i.d
estimates of 8. (The ek are defined in the proof

of Theorem 3. 10 Then, denoting ZE k/n by
8.. and Zk_l(e k- 6_.)2/n(n-1) by 54 (n), the jack-
knife interval for € is:

I a2

o_.+Z(p Gj(n) . (4.6)

This jackknife is suggested by Brillinger [1].

In the simulation experiment, the performan-
ces of the four interval procedures were determin-
ed for the problem of constructing a confidence
interval for the mean of a domain. For adescrip-
tion of and the standard solution to this problem
see Cochran [2], pages 146-149., An artificial
population

- {(x(t, 0,71, 0) 15854, 1< 55500}

composed of 4 strata of size 500 was comstructed,
where X(i,j) equals 1 or 0 according to whether
Y(i,j) belongs to the domain of interest or not,
and where Y(i,j)=i+/1 € (i,j). The €(i,}) are
pseudo-random N(0,1) numbers. Five sample sizes
(n=2,6(1)) were considered. For each sample size
n, six hundred random samples were selected from
P; each sample is composed of a random sample of
size n from each of the four strata. For each of
the six hundred samples, twenty-one intervals for
the domain mean were constructed, one for each of
three methods at seven nominal levels of confi-
dence. The entries of Table I give the proporton
of each group of six hundred intervals that in
fact covered the domain mean, Three comments:
first, the standard interval for a domain mean,
labeled RATIO in Table I, is given in Cochran [2],
pages l48-149; second, the delta interval and the
standard interval turn out to be algebraically



identical for this problem; third, the standard
error of a sample proportion based on six hundred
trials is at most .0204.

In this simulation experiment, the pseudo-
replication interval performed very well in com-
parison with the other intervals. For example,
the difference between nominal and estimated con-
fidence level is generally smallest for the pseudo-
replication interval, substantially so for the
smaller sample sizes. Five additional simulation
experiments, similar to the one described, were
carried out and yielded similar results. These
limited simulation studies suggest that the pseudo-
replication interval procedure (4.3) is valid for
small/moderate n.

5. CONCLUDING REMARKS

The practical use of Gz(n) is constrained by
the assumptions of common stratum size and common
sample size. Suppose these assumptions are not
met; denote by Ni and nj the size and sample size
for the i-th stratum, respectively. If ny <<Nj
and the nj are approximately equal, in the sense
that nj/n; is near 1 for all i and j pairs, then
the developments in Section 3 can still be car-
ried out, replacing equalities by approximate
equalities. This leads to an estimator HIRz(y),
where n is a measure of location of the nj (say
the mean) and R_(y)ls based on the myj_ 1 ng possi-
ble pseudo-replicates. Under these circumstances,
the interval procedure

6(m) +2(BVAR(y) .1)
will be valid. If the nj are quite unequal, the
development of Section 3 breaks down because the
expression for p analogous to (3.4) does not al-
low the a!Dj aj to even approximately cancel out.
In this case, it is not clear how to use R“(y)to
estimate Var[£(yj.,...,y7.)1.

Another apparent constraint to the use of

2(n) is the calculation of R?(y), as it involves
calculating n™ pseudo-estimates. n™ may be pro-
hibitively large. If so, select a large random
sample of the nl subsamples, and use the associ-
ated pseudo-replicates estimates to estimate
R (y). McCarthy's [6] clever balanced selection
scheme for n=2 suggests that there may be a sys-
tematic scheme for selecting a modest number of
the n™ subsamples whose pseudo-replicate esti-
mates can be used to estimate R (y)well also,
Parenthetically, an estimator of o2 (n) could be
based on S2(y), rather than on RZ(y). But note
that calculating s2 y) 1nvolves many more opera-
tions than calculating RrZ (y).

One final remark. In the simulation studies
the jackknife interval is occasionally very mis-
leading, in the sense that (6_..- 8)A52(n) is
very large in magnitude. This kind of behavior
was not exhibited by the pseudo-replication in-
terval or the standard interval. These points
are reflected by the entries in Table II. The
entries come from the experiment associated with
Table I. For each sample size (n=2,6(1l)), the
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following triple of numbers were listed for the
first one hundred samples: (9 n)- G)A/cg(n),
6(n)- G)A/ (@), and (@..-0)//52(n). Table II
lists six og these triples for each sample size,
from among those triples at least one of whose
members is 2.0 or larger in magnitude. The poor
performance of the jackknife interval is apparent
particularly at small sample sizes. 1In no case
in these simulation experiments are either of
the other intervals very misleading relative to
the jackknife interval. Hinkley [4] shows that
a jackknifed estimator of the correlation coef-
ficient displays the same erratic behavior.
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Table

I Nominal Confidence Level

80%

85%

90%

92%

947

95%

99%

RATIO .7233 L7550 .8083 .8300 .8433 .8516 .9150

n=2 PSEUDO .8616 .8850 .9100 .9250 . 9400 L9416 .9750
JACK. .6000 .6283 .6733 .6983 .7066 .7233 .7883

RATIO .7500 . 7866 .8450 .8550 .8766 .8883 L9450

n=3 PSEUDO .8483 .8683 .9100 .9283 .9366 .9433 .9750
JACK. .6883 .7216 . 7600 .7783 L7916 .8083 .8733

RATIO .7583 .8200 .8600 .8833 .9100 .9183 .9666

n=t PSEUDO .8350 .8800 .9183 .9350 L9450 .9500 .9866
JACK, .7383 L7716 .8116 .8333 .8583 .8733 .9250

RATIO .7500 .7983 .8583 .8883 .9133 .9283 .9750

n=5 PSEUDO .8050 .8550 .9133 .9383 .9500 . 9566 .9883
JACK. L7316 .7650 .8166 .8366 ,8483 .8533 .9350

RATIO L7950 . 8400 .8950 .9083 .9200 .9283 .9716

n=6 PSEUDO .8350 .8850 .9116 .9283 . 9400 . 9450 .9833
JACK. L7716 .8316 .8733 .8916 .9050 .9133 .9533

Table I1I (6 - 8)4//3%(n)

RATIO - 2.7209 - 1.4934 - 3,7136 0.7503 1.3030 - 1.0643

n=2 PSEUDO - 1.8639 - 0.9931 - 2.0315 0.4902 0.7503 - 0.5558

JACK, -35.4063  -48.3115 -17.3102  27.0443  17.4852 =19.5939

RATIO - 3.9695 - 5.3978 - 2.7540 1.9705 4.7656 - 2.6943

n=3 PSEUDO - 3.2193 - 4.3597 - 2.1649 1.5389 3.8533 - 1,9682

JACK. - 4.7950 - 4.1977 -11.1347 5.8058 6.1411 - 4.3014

RATIO 2.0650 -~ 2,5770 - 3.1543 2.3468 1.3672 - 1.9596

=4 PSEUDO 1.7180 - 2.1787 - 2.6850 1.9992 1.1539 - 1,6688

JACK, 2.3439 - 3.7330 - 2.9778 1.9311 2.9534 - 3.0353

RATIO - 2.8511 - 2,0258 1.8956 2.9404 1.3670 - 4.3412

n=5 PSEUDO - 2.5134 - 1,7273 1.6688 2.5353 1.2081 - 3,7903

JACK. - 4.1252 - 3.2102 4.4961 5.3570 5.1943 - 3.9459

RATIO - 1.8884 - 2.3032 - 2.7854 1.1550 2.9543 - 2.4633

n=6 PSEUDO - 1.6983 - 2.0734 - 2.5333 1.0293 2.6668 - 2,2107

JACK., - 2,0499 - 8,7949 - 3.0168 2.7209 2.9590 - 2.6132
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