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i. INTRODUCTION 

Consider a finite population of vectors com- 
posed of L strata, together with a parameter 

e=f(YI''Y2-''''YL'); Yi- is the average of the 
vectors in stratum i and f is a known real-valued 
function. Many parameters are of this form: the 
combined ratio, the mean of a domain, and the 
correlation coefficient are examples• Suppose 
that a random sample of size n is taken from each 
stratum, with the objective of constructing a 
confidence interval for e. Let Yi. be the aver- 
age of the vectors sampled from stratum i. Then 
a reasonable estimate of @ is f(Yl 'Y2 g''''YL )= 
~(n). Denote the variance of ~(n~'by ~(n). if 
(~(n)-e)/~~) is approximately standard normal, 
then a confidence interval for @ can be cons~uct- 
ed by finding an accurate estimate of ~2(n). Cur- 
rently there are three approaches used to estima- 
te ~2(n). First, by consideration of the speci- 
fic function f it is possible that an estimable 
expression (often approximate) can be derived for 
Var[f(yl.,y2., .... yL.)]. Second, by explicit or 
numerical calculation of the appropriate partial 
derivatives of f, the delta method can be used to 
estimate ~2(n); see Tepping [7] and Woodruff [8]. 
Third, there are pseudo-replication methods for 
estimating o2(n); see Kish and Frankel [5] and 
McCarthy [6]. Jackknife procedures applied to 
@(n) provide a fourth approach to constructing a 
confidence interval for e. 

In this paper, an estimator of ~2(n) based 
on pseudo-replicates is introduced. Some theo- 
retical properties of this estimator are derived. 
Also the results of simulation experiments are 
presented, in which the interval based on the 
pseudo-replicate estimate of ~2(n) compared fa- 
vorably with three other interval procedures. 
Specifically, in Section 2, the problem and nota- 
tion of this paper are introduced• In Section 3, 
a family of pseudo-replicate estimates of @ is 
defined• An estimator @2(n) is proposed, which 
is based on the pseudo-replicate ~ estimates of @. 
In Section 4, it is shown that if f(.) is linear, 
$2(n) is identical to the standard unbiased esti- 
mate of o2(n-l). Also, a theorem is presented 
which suggests that (~(n)-@)/v/~(n) has approxi- 
mately a standard normal distrlbution. ¢ The re- 
suits of simulation experiments are presented, 
which show the interval based on $2(n) performing 
well in comparison to other standard p interval pr~ 
cedures. In Section 5, remarks are made on the 
practical use of $p2(n). Also, the jackknife in- 
terval used in the simulation studies behaved er- 
ratically relative to the other intervals. This 
behavior is displayed• 

2. NOTATION 
In this section, the notation for this paper 

is developed. Consider a finite population p of 
vectors from IRmdivided into L strata• Denote 
the members of P by Yij=(Yijl,Yij2 ..... Yijm)'- 
Here l<__i_<L and l_<j_<Ni; i identifles the stratum 
and j a particular vector among the N i which be- 
long to stratum i Denote ~Ni y.../~T h,, v . • .__ • .• 

and denote the mean of the vJec~orlsJ~n'istratum l K 

i, (Yi.l,Yi.2, ..,Yi.m), by Yi." Also define the 
matrix D i by 

N. 
l 

~l (Yijk-Yi.k) (Yij~-Yi.%) 
j=l 

[Di]k~ = (Ni_l) 

Suppose Z is a vector selected at random from 
stratum i. Then E[Z]=Yi. and ((Ni-I)/Ni)D i = 
Cov[Z]. 

Suppose e is an unknown real parameter, where 
e=f(Yl-,Y2., .... YL.) and f(.) is a known continu- 
ous function. Consider drawing a random sample 
of size n ~ithout replacement from each stratum; 
denote the vector outcome of draw j from stratum 

' n " i by~ Yij=(Yijl,Yij2 ..... Yiim) • A estimate of @ 
is @(n)=f(yl.,Y2. , .... YT ), where y~ =En ly~;/n 

..,-+ • ^ . i . .  • j = ..i. . i . .  • 

Define b(n) and o2(n) by E[@(n)] =@+b(n) an~ 
Var[@(n)]=~2(n), and the matrix Di by 

n 

Z(Y''--Y k )(yij ~) _ j=l ljm i- ~-Yi. 

["i] k~ ~ - (n-l) " 

Of course, the bias and variance of $(n) depend 
on P and f(.), in addition to n; since P and f(') 
are kept fixed in the results of this paper, this 
dependence is not made explicit in the notation. 

3. A PSEUDO-REPLICATE ESTIMATE OF o2(n) 

In this section, a collection of pseudo- 
replicate estimates of @ is defined for sub- 
samples of size (n-l) from the strata samples of 
size n. Then two results are developed. First, 
the average of the squared differences between 
these pseudo-replicates and ~(n) equals the pro- 
duct of a factor greater than one an~ an unbiased 
estimate of ~2(n-l)(l-p(n)). Here G-(n-l) is the 
variance of f (Yl.,Y2-, " " "YL-) when the stratum 
sample size is (n-l); p(n) is a correlation co- 
efficient which will be defined. Second, under 
assumptions on the N i and f(.), an explicit ex- 
pression for p(n) is derived. As a consequence 
of these two results, an estimator of o2(n), 
~p2(n), is developed• 

Imitating McCarthy [6], we proceed to define 
a collection of pseudo-replicate estimates of e. 
The data generated by drawing a sample of size n 
from each stratum can be displayed as follows• 

I Yll YI2 YI3 .. Yln 
2 

Stratum . Y21 Y22 Y23.. Y2n 
• • • • • 

L YLI YL2 YL3 .. YLn 

Denote this data matrix by y. There are t=(n) L 
ways to select a subsample of size (n-l) from 
each of the rows of y. These subsamples can be 
identified by indicating the element in each row 
of y that is not selected; we use the vector 
(4,6,...,7)'c~L to denote the subsample which 
deletes Y14,Y26,...,YL7 from y. The vectors 
which in this fashion represent all possible sub- 
samples are ordered lexicographically and the cor- 
responding subsamples are numbered from i to t. 
Let Yi(j) be the element of row i of y that is not 
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in subsample j, l<j<t. Now let (ny. -y..~.)/(n-l)= 
• - l~- ~ for wii. Finally define 8~(n)=f(wl~,W2~,...,WL~) 

_ _ ~_ ]. 

I <_ j <_ t; the @j (n) are" the pseu~o-r~plicate eat °- 
mates of 8. 

Define I~ 2 (y) by 

t 
l~2(y) = ~(8 (n) - ~(n))2/t 

j=l j 

The magnitude of l~2(y)is an indicator of the mag- 
nitude of ~2(n). The following theorem is speci- 
fic on this point. 

Theorem 3.1 (n/(n-l)) 1~2(y)=S2(y) (l+T(y))where 
E[S2(y)]-~2(n-l)(l-p(n)) and r(y)_>0. 

Comments: the random variables S2(y) and T(y), 
and the parameter p(n), are conveniently defined 
in the proof of Theorem 3.1. Note in the proof 
that S2(y) is a sufficiency improvement of an un- 
biased estimate of a2(n-l) (l-p(n)), and that 
T(y) looks as if it should be near zero. 

Proof. Let 8k, for l<k<n, be the pseudo-re~icate 
estimate of @ corresponding to the subsample of y 
obtained by deleting the k-th column of y. The 
^ 

@ k are identically distributed, having the same 
distribution as 8(n-l). Therefore O+b(n-l) = 
E[8 k] and Var[Sk]=o2(n-I ). By symmetry, the 8k 
have common correlation; denote it by p(n). De- 
note 7~_lSk/n by 8.. Standard linear model theory 
yeilds that E~_ I(8k-8 )2/(n_l) is an unbiased es- 
timate of ,2(n-l) (l'p(n)). Write 

n ($k-$(n)) 2 n (8k-8.)2 n ($.-@(n))2 

Y (n-l) = ~ (n-l) + 7 (n-l) (3.1) 
k=l k=l k=l 

There are u=(n') L data matrices y which can be 
constructed from the original y by permuting the 
elements in each row of the original y. Averag- 
ing the three terms in (3.1) over all these u data 
matrices (l_<j<_u) yields 

u n - .($k-8(n)~ 
2 

n 7. ~ (3.2) 
(n-l) j=l k=l un 

u n ($k-@.) 2 : u n j=E I k=~l( @. -8 (n)) 2 
= 7 E ,i+ . . . . .  

j=l k=l u(n-l) u =~I n J 
j k~l (@.-$k ) 2 

Define S2(y) and T(y) in the obvious way so that 
the right side of (3.2) equals S2(y) (l+T(y)). 
It is not difficult to show that the left side Qf 
equation (3.2) equals (n/(n-l))~2(y). l 

Assuming T(y)-" 0 and o2(n-l)--'o2(n), Theorem 
3.1 suggests 

[n/(n-I) ] [I~2 (y) / (l-p (n) ] (3.3) 

as an estimator of a2(n). But the value of p(n) 
is not known, and in general depends upon f('), 
n, and P. In this paragraph, an expression for 
p(n) is derived under assumptions on f and the 
N i. Then an estimator of o~(n) is produced by 
substituting this expression into (3.3). 

Theorem 3.2 Suppose that f(YI.,Y2.,...,YL. ) = 
EL a' Yi +do where ao6~ and a iEIR mfor l<i<L. 
l=l l 

Then p(n) is 

L (n,2) (Ni-n) , 
E ! - -  I + a.D.a. 
i=IL Ni(n_l)2 (n_l)2 N i j i i l 

L i Ni- (n-l) 
7 a'D a • . . 

i=l (n-l) N.I i i l 

Proof. p(n)=Cor(81,82) , where 8. is defined in 
the proof of Theorem 3.1. Cov(8~,82) equals 

L (n yi. -Yil ) L (n yi. -Yi2 ) 
Cov~ Y a' , Y a' 

i=l i (n-l) i=l i (n-l) j " 

Since the draws from different strata are inde- 
pendent, this simplifies to 

L n n 

' + T a' a'. + ~ a' 7 Cov a i Yi2 i Yij' i Yil i Yij 
i=l - ~=3 ~-3 . . . .  

2 
(n-l) 

! 

Using Cov(a~Yij,aiYi%) = -(I/Ni)a~.Diai for j~, 

this expression further simplifies to the numera- 
tor of p(n). Now 
Var(81)=Var(82)=~L ' Cov[(nYi. )/(n-l)]a i=lal -Yi2 i 
which simplifies to the denominator of p(n).• 
The following theorem gives a useful expression 
for p(n), in that it does not involve the D.. 

l 

Theorem 3.3 Suppose f(YI.,Y2.,...,YL.) = 
a o + E L ' -=laiYi~ " ' a s  in Theorem 3 2 and Ni=N for 
l<i<L. Then p(n)=[(N-n)(n-2)-l]/[(n-l)(N-n+l)]. 

Proof. Simply examine p(n) as given by Theorem 
3.2. I 
Suppose that f(') is approximately linear over 
the range of possible values of the random vect- 
ors Yi- and that stratum sizes are equal. Then, 
substituting the result of Theorem 3.3 into 
(3.3), we have the following estimator of o2(n). 

IR 2 N-n+l ~2(n) = n (y) 
p N 

This estimator will be called the pseudo-repli- 
cate estimator of o2(n). 

4. RESULTS ON o2(n) 
P 

In this section, three results are present- 
ed on ~p2(n) First, when f(.) is linear, ~D2(n) 
is identica{ to the standard unbiased estimate of 
,2(n-l). Second, under^the assumotion of with 
replacement sampling, (8(n)-8)/~--~~y) convergs 
in distribution to a standard normal distribudan. 
Third, the results of a simulation experiment are 
presented in which a confidence interval proce- 
dure for 8 based on @2(n) performed well in com- 
parison to three othe~ interval procedures. 

Suppose f(Yl 'Yo ' .... YL')=ao+EL-Ia'Y~'" 
Then o2(n)=7~_1 a~ Cov(Yi.)ai, which equals 
E~_I[(N-n)/(N-n~] -a~ D i ai. The standard unbiased 
estimate of o2(n) is produced by replacing D i 
by D i, yielding 
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L 
Z N-n i a'.D a (4 I) 

N n i i i 
i=l 

The followin~ theorem shows that (4.1) is closely 
related to ~p(n). 

Theorem 4.1 Suppose f(YI.,Y2., .... YL.) = 
ao+~l$=l a~Yi~. Then ~p(n) equals 

n N-(n-l) ~ N-n I '.n.. (4.2) . . . .  a a 

n-i N-n N n i i l 
i=l 

Proof° The theorem follows from the identity 
1~2(y ) =7i=iL a[ Diai/(n(n-l)), which we proceed to 
verify. By definition, I~2 (y)=?j= i(8 j (n)-@ (n))2/t 

where Sj(n)=ao+YL=la[!iy~.t~i(j))/(n-i ) and 
8(n)=a o + 7~L=I a[ Yi." w data matrix y 

fixed, consider the experiment of selecting one 
of the t pseudo-replicates at random. ~enote the 
result by $. Clearly m[8]=8(n),so Var[e]=ll2(y). 
But it is legitimate to regard the random variaNe 
@ as the pseudo-replicate estimate of @ produced 
by selecting n-i vectors at random from each row 
of y. Denote by Yi" the average of the (n-l) 
selected from the i-th row of y. From this point 
Var(8) equals 

L L 
' Cov(Yi )a = Z a' :-n-(n-l) _!_1 ^ 

7~ ai " i i=l i i n n-i Di.jai 
i=l 

L a'. D.a. 
= ~ i 1 i 

i=l n(n-l) m 

It should be noted that (4.2) simplifies to the 
standard unbiased estimate of o7(n-I). This is 
consistent with Theorem 3.1, in light of the fact 
that T(y)=0 when f(-) is linear. Theorem 4.1 is 
comforting, in that it shows ~p2(n) to be a simple 
multiple of the standard unbiased estimator of 
02(n), when f(.) is linear. 

In this paragraph, a theorem is presented 

which suggests that for nonlinear f(.), if n<<N 
and n is large, (8 (n) -e ) //@p~(n) is approximately 
normal in distribution. 

Theorem 4.2 Suppose that the stratum samples of 
size n are drawn with replacement. Then 
(@(n)-8)//n~2(y) converges in distribution to a 
standard normal distribution, under the following 
condition. Regarding f (x l,x 2, . , x$6 ]R m, as 
a function from I~ mLto I~, f(-)'h "xL) as contlnuous 
partials and second partials in a neighborhood 
of xi=Y i., l<i<L. 

Proof. It is well-known that ($(n)-@)//V(n) 
converges in distribution to a standard normal 
distribution. The theorem follows from a lengthy 
argument presented by Fenech (3) that~nyn~y) 
converges stochastically to one. M 

Theorem 4.2 suggests that an approximate 
1006% confidence interval for @ is 

@(n) + Z (6)/$2(n) (4.3) -- p 

where P[IN(O,I)I<_Z(6)}=6. Immediate questions 
are: how close is the actual level of confidence 
of (4.3) to the nominal i00~%? How does this 

difference compare with those which result with 
other standard methods of constructing an inter- 
val for 8? Using simulation experiments, these 
questions were studied. In the remaining para- 
graphs of this section, three methods other than 
(4.3) which can be used to construct an interval 
for @ are described, and a simulation experiment 
testing the four interval procedures is described 
and its results presented. 

The three confidence interval methods other 
than (4.3) are: the standard method, based on 
direct derivation of an estimable expression for 
o 2(n) ; the delta method; and the jackknife method. 
Specifically o2(n)=Var[f(yl.,Y2 ..... ,YL-)]- Since 
f(-) is known, a (usually approximate) expression 
for o2(n) is derived which can be estimated from 
the data. Denoting this estimate by Ss2(n), the 
following is the standard interval for 8: 

__ /$~(n) . (4.4) $(n) + Z(~ 

In the delta method, an estimate of the variance 
of the linear approximation to f(.) is used to 
estimate 02(n), yielding 

$(n) + Z(6~@2(n) (4 5) 
-- d " 

In the jackknife method, the pseudo-values 
$_k=n~(n)-(n-l)Sk for l<k<n are regarded as i.i.~ 
estimates of 8. (The 8k are defined in the proof 

n ^ k/n by of Theorem 3. i. ) Then, denoting ~=i e_ 
8_. and 7~= l(8_k-$_.)2/n(n-l) by @~(n), the jack- 
knife interval for @ is" 

$_ +Z(6~$2(n) . (4.6) "- j 

This jackknife is suggested by Brillinger [i]. 
In the simulation experiment, the performan- 

ces of the four interval procedures were dete~- 
ed for the problem of constructing a confidence 
interval for the mean of a domain. For a descrip- 
tion of and the standard solution to this problem 
see Cochran [2], pages 146-149. An artificial 
population 

P = <(X(i,j),Y(i,j))" i<_i<_4, l<_ j _<_ 500) 

composed of 4 strata of size 500 was constructed, 
where X(i,j) equals I or 0 according to whether 
Y(i,j) belongs to the domain of interest or not, 
and where Y(i,j)=i+~i 6 (i,j). The 6 (i,j) are 
pseudo-random N(0,1) numbers. Five sample sizes 
(n=2,6(i)) were considered. For each sample size 
n, six hundred random samples were selected from 
P; each sample is composed of a random sample of 
size n from each of the four strata. For each of 
the six hundred samples, twenty-one intervals for 
the domain mean were constructed, one for each of 
three methods at seven nominal levels of confi- 
dence. The entries of Table I give the proportion 
of each group of six hundred intervals that in 
fact covered the domain mean. Three comments: 
first, the standard interval for a domain mean, 
labeled RATIO in Table I, is given in Cochran [2], 
pages 148-149; second, the delta interval and the 
standard interval turn out to be algebraically 
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identical for this problem; third, the standard 
error of a sample proportion based on six hundred 
trials is at most .0204. 

In this simulation experiment, the pseudo- 
replication interval performed very well in com- 
parison with the other intervals. For example, 
the difference between nominal and estimated con- 
fidence level is generally smallest for the pseudo- 
replication interval, substantially so for the 
smaller sample sizes. Five additional simulation 
experiments, similar to the one described, were 
carried out and yielded similar results. These 
limited simulation studies suggest that the pseudo- 
replication interval procedure (4.3) is valid for 
small/moderate n. 

5. CONCLUDING REMARKS 

The practical use of @p2(n) is constrained by 
the assumptions of common stratum size and common 
sample size. Suppose these assumptions are not 
met; denote by N i and n i the size and sample size 
for the i-th stratum, respectively. If ni<<N i 
and the n i are approximately equal, in the sense 
that ni/n j is near i for all i and j pairs, then 
the developments in Section 3 can still be car- 
ried out, replacing equalities by approximate 
equalities. This leads to an estimator n~2(y), 
where n is a measure of location of the n i (say 
the mean) and 1~2(y)is based on the ~L=I n i possi- 
ble pseudo-replicates. Under these circumstances, 
the interval procedure 

O(n) _+ Z (~ ~n ~2 (y) (5.1) 

will be valid. If the n i are quite unequal, the 
development of Section 3 breaks down because the 
expression for p analogous to (3.4) does not al- 

l low the aiD i a i to even approximately cancel out. 
In this case, it is not clear how to use l~2(y) to 
estimate Var[f(yl.,...,yL. ) ]" 

Another apparent constraint to the use of 
@p2(n) is the _calculation of I~2(y), as it involves 
calculating n L pseudo-estimates, n L may be pro- 
hibitively large. If so, select a large random 
sample of the n L subsamples, and use the associ- 
ated pseudo-replicates estimates to estimate 
IR2(y). McCarthy's [6] clever balanced selection 
scheme for n=2 suggests that there may be a sys- 
tematic scheme for selecting a modest number of 
the n L subsamples whose pseudo-replicate esti- 
mates can be used to estimate IR2(y) well also. 
Parenthetically, an estimator of o2(n) could be 
based on S2(y), rather than on 1~2(y). But note 
that calculating S2(y) involves many more opera- 
tions than calculating 1R2(y). 

One final remark. In the simulation studies 
the jackknife interval is occasionally very mis- 
leading, in the sense that (O_.- @)/~(n) is 
very large in magnitude. This kind of Jbehavior 
was not exhibited by the pseudo-replication in- 
terval or the standard interval. These points 
are reflected by the entries in Table II. The 
entries come from the experiment associated with 
Table I. For each sample size (n=2,6(i)), the 

following triple of numbers were listed for the 
first one hundred samples: (e(n)-@)/~(n), 
(O(n)-e)/~D2(n), and (O_.-e)/~j2(n). Table II 
lists six o~ these triples for each sample size, 
from among those triples at least one of whose 
members is 2.0 or larger in magnitude. The poor 
performance of the jackknife interval is apparent 
particularly at small sample sizes. In no case 
in these simulation experiments are either of 
the other intervals very misleading relative to 
the jackknife interval. Hinkley [4] shows that 
a jackknifed estimator of the correlation coef- 
ficient displays the same erratic behavior. 
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Table I Nominal Confidence Level 

80% 857o 90% 92?o 947o 95?o 99?o 

RATIO . 7233 . 7550 .8083 .8300 .8433 .8516 .9150 

n= 2 PSEUDO . 8616 . 885 0 . 9100 . 925 0 . 9400 . 9416 . 975 0 

JACK. .6000 .6283 .6 733 .6983 . 7066 . 7233 . 7883 

RATIO . 7500 . 7866 . 8450 . 8550 . 8766 . 8883 . 9450 

n= 3 PSEUDO . 8483 . 8683 . 9100 . 9283 . 9366 . 9433 . 9 750 

JACK. .6883 . 7216 . 7600 . 7783 . 7916 . 8083 . 8733 

RATIO . 75 83 . 8200 . 86 00 . 8833 . 9100 . 9183 . 9666 

no4 PSEUDO . 8350 . 8800 . 9183 . 935 0 . 945 0 . 95 00 . 9 866 

JACK. . 7383 . 7716 . 8116 . 8333 . 8583 . 8 733 . 9250 

RATIO . 7500 . 7983 .8583 .8883 . 9133 . 9283 . 9 750 

no5 PSEUDO . 805 0 . 8550 . 9133 . 9383 . 95 00 . 9566 . 9883 

JACK. . 7316 . 7650 . 8166 . 8366 . 8483 . 85 33 . 9350 

RATIO . 7950 . 8400 . 8950 . 9083 . 9200 . 9283 o 9716 

no6 PSEUDO . 8350 . 8850 . 9116 . 9283 . 9400 . 9450 . 9833 

JACK. . 7716 .8316 .8733 .8916 .9050 .9133 .9533 

Tab le II (~ . @ )//$2 (n) 

no2 

no3 

no4 

no5 

no6 

RATIO 

PSEUDO 

JACK. 

RATIO 

PSEUDO 

JACK. 

RATIO 

PSEUDO 

JACK. 

RATIO 

PSEUDO 

JACK. 

RATIO 

PSEUDO 

JACK. 

- 2.7209 - 1.4934 - 3.7136 0.7503 1.3030 - 1.0643 

- 1.8639 - 0.9931 - 2.0315 0.4902 0.7503 - 0.5558 

-35.4063 -48.3115 -17.3102 27.0443 17.4852 -19.5939 

- 3.9695 - 5.3978 - 2.7540 - 1.9705 - 4.7656 - 2.6943 

- 3.2193 - 4.3597 - 2.1649 - 1.5389 - 3.8533 - 1.9682 

- 4.7950 - 4.1977 -11.1347 - 5.8058 - 6.1411 - 4.3014 

2.0650 - 2.5770 - 3.1543 - 2.3468 1.3672 - 1.9596 

1.7180 - 2.1787 - 2.6850 - 1.9992 1.1539 - 1.6688 

2.3439 - 3.7330 - 2.9778 - 1.9311 2.9534 - 3.0353 

- 2.8511 - 2.0258 1.8956 2.9404 - 1.3670 - 4.3412 

- 2.5134 - 1.7273 1.6688 2.5353 - 1.2081 - 3.7903 

- 4.1252 - 3.2102 4.4961 5.3570 - 5.1943 - 3.9459 

- 1.8884 - 2.3032 - 2.7854 - 1.1550 - 2.9543 - 2.4633 

- 1.6983 - 2.0734 - 2.5333 - 1.0293 - 2.6668 - 2.2107 

- 2.0499 - 8.7949 - 3.0168 - 2.7209 - 2.9590 - 2.6132 
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