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This paper discusses statistical issues 
relevant to the problem of confidentiality. A 
general structure is presented and statistical 
methods for estimating parameters from grouped, 
rounded, or intentionally contaminated data are 
surveyed. 

i. Introduction 

There is growing concern that information 
provided by an individual to a specific source 
remains confidential to that source. The infor- 
mation collected, however, can be valuable for 
policy making decisions or research. For example, 
patients provide doctors with information 
necessary for the treatment of a disease, and 
these data are valuable to a researcher for 
studying the causes and cures for that disease. 
The information collected by the Internal 
Revenue Service is another example, because it 
might be important for making economic policy 
decisions. The objective is then to find 
appropriate forms for making these data available 
in such a way as to maintain the confidentiality 
of an individual's record and to provide infor- 
mation from which accurate inferences can be 
drawn. The paper treats the problem from the 
perspective of the protection of confidentiality. 
The issue of individual privacy, that is whether 
an individual has the right not to participate in 
a research study unrelated to the original pur- 
pose for which the data were collected, cannot be 
resolved by statistical methodology. 

Before we discuss statistical methodologies 
that can contribute to solving this problem, it 
is helpful to develop a framework that can be 
used to categorize the subproblems, and identify 
major areas where almost no techniques currently 
exist. We define the agent to whom the data are 
given as the "collector" (C), and the agent who 
wants the data for policy decisions or research 
purposes as the "analyst" (A). In general, C ob- 
tains an identifier (i.e., label) and m variables 
for each of N individuals. We will denote this 
Nx(I+M) data set by (I,X). The analyst A wishes 
to have the value of th~ statistic S(X). How- 
ever, C does not pass X to A. We wil~ denote the 
transformed version of"(I,X) which is passed on 

- -  _ 

to A by (I ,X ). Our objective is to study ways 

of creatin~ ~_T and X T so that it is related to 

(I,X) through the following two general condi~ 

tions- QC: (Confidentiality Condition) 

where 

means that confidentiality is maintained. 
Confidentiality is violated if too much informa- 
tion about one or more of the individuals is 
recoverable from (_IT,XT). 

AC: (Analyst Condition) 

For each statistic S(X) of interest (e.g. 
the Gini index of one of tee variables in X or 

the correlation between two of the variables in 
X)_ there exists an estimating procedure S T on 

(IT,=~) such that ST(I_T,_~) is close to S(X). 

These conditions clearly identify the 
tradeoff. By its nature, CC demands that 
(IT, ~)__ be "far" from (I,X) while AC demands 

that these data sets be "close" The (N,K) dominance 
rule formalizes CC in context of categorical data. 

(c.f. ,6A,7A, 8A, 9A) . Our overview puts more 
emphasis on techniques currently available to A. 

Section 2 is devoted to the problem where 
there is only one collector and one variable 
(i.e., re=l). We extend the problem in Section 3 
to the case with multivariate X. Finally, in 
Section 4 we treat the problem=of data merging 
where the analyst requires information from more 
than one collector. Section 2 treats the least 
complex problem; hence, there is a vast litera- 
ture on statistical methods which can be adapted 
for the purpose of solving this problem. For 
this reason, a disproportionate share of the 
paper is devoted to the second section. This is 
not to imply that this problem is the most 
important. The fact that relatively little work 
has been done on the problems discussed in the 
third and fourth sections indicate the possibility 
of interesting research topics in these areas. 

2. Statistical Techniques for Univariate Data 

In this section we assume that C transfers 
information on only one variable to A. Since S(X) 
does not depend on I, the identifiers in 
themselves are of no use when X is given. We 
also assume that _I and =~ are = such that _I is 

unimportant when __~ is given, so that 

ST(IT,__ ~) = ST(X T ). In this case we may let 

IT=I S (I$ denotes the case where no information 

about the identifiers is available). Setting 

IT=I S will aid in satisfying CC at no expense to 

AC. The issue is then to explore ways of creating 
=~. If X__ is such that (Is,X)_ = ~(I,X)_ = then there 

is no need to transform X in order to preserve CC. 
The statistically interesting problems arise when 
X needs to be transformed. 
- One method of transforming X that is well- 
suited for solvin~ this problem-is to group the 
data: X will then consist of the following 

=T 
information : 
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I) boundaries for the grouping intervals 

a 0 < al<...<a k 

2) n. = number of observations between 
i 

ai_l,ai),i=l,...,k , and perhaps 

3) x. = means of the n. observations falling 
into interval i . i, or even additionally, 

2 
4) s. = variance of the n° observations falling 

1 1 
into interval i. 

If the boundary points are chosen wisely so that 
none of the n. are small, then CC will be satis- 

i 
fied. The senses in which AC is satisfied are 
explored in subsections 2.1 and 2.2 Other 
methods for transforming X are briefly considered 
in subsection 2.3. 

2.1 Grouped Data with the Parametric Form of the 
Density Known 

It is often convenient to model the data set 
X by asserting that the variable of interest 
-follows some density function f(x). We first 
assume that f(x) is thought to belong to a 
specific parametric family (e.g., normal). Al- 
though in order for AC to be satisfied all the 
information needed to be given in X_ is the 

-T 
values for the sufficient statistics for the 
assumed parametric family, it is important to 
guard against the possibility that the model is 
mis-specified I. Including grouped data in X_ 
provides a richer database for exploratory-T 
data analysis. 

We first focus on estimating parameters 
from grouped data. Although methods for finding 
maximum likelihood estimates from grouped data 
exist, these approaches are typically computa- 
tionally cumbersome unless appropriate summary 
statistics in each interval are included in X_ 
(e.g., Xi' si 2 for the normal). Since the 

_.[, 

boundary a i is approximately the (~ n.) 

order statistic, another approach 9-1 
is to consider estimations of the form 

k-i 
ST=i__E 1 cia i (i.e. best linear combinations of 

those order statistics). 
Ogawa [26] has determined the optimum value 

of the weights c., for the location and scale 
' 1 

parameters for a symmetric density of the form 
1/o f((x-u)/o) and the approach is readily adapt- 
able to other shapes. It is important to note 
that the c. depend on f(x). His results have 
been used land generalized by many authors. 
Table 1 summarizes some of the vast 
literature reporting the efficiency of estimates 
based or the optimum spacings relative to the 
maximum likelihood estimate for various distri- 
butions. 

A quick study of the results in Table 1 in- 
dicates that with 5 to I0 properly selected in- 
tervals, relatively efficient estimates are 
readily derived. Since many large data sets are 
reported with at least 15 intervals 2, these re- 
sults suggest that the parameters of assumed 
density functions can be well estimated from 
linear combinations of order statistics. More- 
over, robust linear combinations of a few per- 
centiles have been derived for certain families 

of densities, e.g. in order to estimate ~ for 
symmetric densities, [13], and promising research 
has begun on estimating the scale parameter. 
Therefore, in the univariate case with large 
samples, techniques from grouped data appear to 
be valuable as the database is rich enough to 
satisfy C2, even against mis-specification of the 
parametric family, and still preserve CC. 

When X T is extended to include the group 

means, x i, i=l,..,k, even better estimates can be 

obtained. Smith. [32] studied estimators which 
are linear combinations of the group means, 
(i.e., c i ) as well as estimators combining 

i=l 

the group means with the percentiles (boundary 
points). In the parametric cases he studied, the 

efficiency of the optimal linear combination 
estimators of location for double-exponential and 
logistic data were greater than 93% when 5 per- 
centiles were used. For the scale parameter, an 
efficiency of over 95% relative to the best 
estimator for each distribution was obtained for 
the normal, double-exponential, log-normal and 
log-logistic when only three equally spaced 
fractiles were used. Indeed Smith showed that 
optimal linear combinations of group means are 
more efficient than optimal linear combinations 
of order statistics based on the boundaries. 
Naturally, there may be a tradeoff between maxi- 
mizing the efficiency of an estimator relative to 
the MLE for the complete sample and the robustness 
of the estimation to the mis-specification of the 
underlying density (c.f. [32] ). Although 
suppliers of data could also report goodness of 
fit tests for the underlying data, we shall see 
that accurate bounds for the variance and higher 
moments can be obtained from grouped data just by 
utilizing the general shape of the underlying 
density. 

Although the results in this section are 
based on optimal spacing, other choices of per~ 
centiles, such as equi-probable or those based on 
expected values of order statistics do nearly as 
well. Mosteller demonstrated this when f(x) is 
normal. Eisenberger and Posner [6] derived opti- 
mum estimators for both ~ and o with f(x) normal, 
by minimizing several criteria of the form 
V(~) + bV(o) (b--1,2,3,). In all cases the 
efficiency of the estimators of both ~ andqwere 
greater than 90% and 98% for I0 and 20 percentiles 
respectively. 

2.2 Grouped Data with Assumptions on the General 

Shape of the Density 

In some applications one may know that the 
density function decreases (e.g. income and sur- 
vival data in the tail) or is unimodal (e.g. edu- 
cational test data). 

For decreasing density funtions where Eiare 
given, Gastwirth and Krieger OA] have derived 
upper and lower bounds from grouped data for 

a 

~h(x) dF (x) assuming h(x)~is convext (e.g. all 
-" moments) and a~ is finite. The effectiveness 
of these results Kis illustrated by looking at 
two examples : 
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Exam le 1 F(x) = (l-e-X)/(l-e -2)- for 0 < x < 2 
P , _ -- 

Example 2 F(x) = 125(x3-1)/124x 3 for 1 < x < 5. 

In order to indicate the value of the information 
contained in the group means, Krieger [17] ob- 
tained the bounds with and without the ~.. Table 

1 
2 presents these results. For these cases, we 
can see that it is preferable to have the group 
means rather than reporting information for more 
intervals. 

Krieger [18] obtained analagous results as- 
suming the underlying density function is unimodal. 
For example, for the standard normal density and 
8 groups, bonds on the variance are given by th~ 
interval (0.9683, 1.0309). Similar bounds for 
percentiles (i.e. F-l(p)) with known and unknown 
group means are illustrated for the standard 
normal in Table 3. 

Even if assumptions about the shape of f(x) 
over the entire domain are difficult to justify, 
the analyst might still be willing to make assump- 
tions about the shape of the density function 
over more restricted regions. The results des- 
cribed above can be used for these restricted 
regions and then pieced together for the entire 
domain. Finally, if the analyst is not willing 
to make any assumptions about the shape of f(x) 
it is possible to obtain results in certain 
cases (c.f. bounds on the Gini index and other 
measures of variation as shown in [8]). 

2.3 Rounded Data and Contaminated Data 

One possible approach for transforming X is 

Another possible approach is to intentionally 
contaminate X. In our framework we could write 

X T = X+e where for example el,...,e N are indepen- 
-- __ 

dent and identically distributed from a suitably 
chosen distribution with enough variance to insure 
CC holds. One idea which will aid in satisfying 
C2 is to let 

N 

d.=(e-e) -2 ~ X i (ei-e) 
I i i=l 

( ei-e ) 2 
i=l 

and then let __~=X + d. The mean and variance of 

the transformed values agree with the mean and 
variance of the actual data. This method can be 
extended to make sure that the first ~ moments of 
X and ~X T are the same. Of course, ~ < < N is 
~eeded =Ifor CC. 

3. Statistical Techniques for Multivariate Data 

with One Collector 

We now assume that C transfers to A informa- 
tion on more than one variable. As in the case 
with one variable, we assume that there is no 
need to transfer the labels (i.e. we let I T = !~). 

We first consider grouped data and then summarize 
other possible approaches for creating _X T. All 
of the literature appears to be devotedlto the 
multiple regression problem. 

3.1 Grouped Data 

One approach using grouped data for the 
to round the values of X. In order for CC - to bivariate case is due to Mosteller [25]. He uses 
hold, this rounding must be coarse. Mathematically, the number of observations falling into four corners 
rounding can be viewed as a special case of 
grouping where the data is grouped into intervals 

of width h centered at c-ih, i=0, +i, +2, .... We 
treat rounded data separately, however, as special- 
ized techniques have been developed for this form. 

Of particular note are Sheppard's correc- 
tions which relate moments of rounded and un- 
rounded distributions under certain regularity 
conditions in the limiting case of small rounding 
errors. For discussion, see Kendall and Stuart 
[2A], and Wold [3A]. For the normal, Sheppard's 
corrections give the MLE in the limiting case 
[4A]. Using Fourier techniques, McNeil [24] 
developed a general formula for a consistent 
estimator of a parameter and gave several illus- 
trations. For estimating the mean of a normal 
density function with known o he obtained quite 
efficient estimates (74%) relative to the MLE 
even when h=2o. When h < ~, the efficiency is 
greater than 90%. For estimating the scale 
parameter of the exponential distribution, as 
long as h was less than the mean of the data his 
estimates had efficiency > .92. Unfortunately, 
for multi-parameter families the algebra involved 
becomes rather complex. David and Mishriky [4] 
showed that the grouping has only a moderate 
effect on the expected value of order statistics 
supporting the contention "that estimates 
appropriate in the ungrouped case will continue 
to give good results in the grouped case." 

of the plane determined by the lines x=~ _+ko , 
I X X 

and y=~ . The ARE of Mosteller s approach 
for estimating p assuming normality is about 55% 
for the optimum choice of k. In order to improve 
upon this method, more groups must be used. This 
may be difficult to achieve and still maintain 
enough observations in each cell to insure CC. 

Another approach has been developed by 
Gastwirth and Spruill. They divide the x data 
into k ordered groups and then obtain the mean 
and the variance of the y points for each of 
these groups. They have studied estimators 

which only use (x i,sxi, Yi' Syi)' i= l,...,k. 

The simplest one is to fit a linear regression 
through (xi,Yf) and then estimate p by ~s /s . 

x y 
The theoretical properties of the procedure will 
appear elsewhere [33], but the following summary 
of their Monte-Carlo results reported in Table 4 
shows that little information is lost when this 
estimate of p with ten groups is compared to the 
true correlation coefficient or the estimate 

based on complete data. 
The book by Haitovsky [ii] studies the field 

of estimation of multiple regression from group- 
ed data. Some of the problems he encountered will 
be alleviated if the group means and variances 
are reported as above. Since this area is 
relatively unstudied, a few other techniques that 
have been proposed should be noted. One inter- 
esting suggestion is due to T. Jabine. 
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If we denote the data of interest by (X,Y) then 
XT=X and YT is created by grouping _X, looking at 

all Y values in a particular X group, and then 
assigning these Y values to an X value in that 
group at random. Ordinary regression methods can 
now be used, and if there is a relation between 
X and Y, again the ordering of the X's should 
allow it to be estimated. 

3.2 Rounded Data 

Recent work by Dempster and Rubin [5A] sug- 
gests that in regression problem with rounded 
independent variables, estimates of regression 
coefficients can be very sensitive to the be- 
havior of the distribution of the independent 
variables if they are highly colinear. In the 
limiting case of large samples and small rounding 

errors, Sheppard's corrections are appropriate, 
but the importance of this result with coarsely 
rounded data is not clear. These results suggest 
that some multivariate estimation problems may be 
quite difficult using _~ if __~ is sufficiently 

rounded to satisfy CC. With coarsely rounded 
data and colineas X, supplementary information 
about the shape of- the distribution of X may be 

m 

needed. 

3.3 Contaminated Data 

One way for the data to be intentionally 
contaminated is similar to the method used for 
the univariate case. We can let _XT=X+d and 
YT=Y+d ' where d and d' are determined as above. 

If it is deemed desirable, we can carry this idea 
one step further by restricting d and d' to 

- -  m 

satisfy the condition that the correlation be- 
tween X and Y equals the correlation between _~ 

and YT" 

Although when there is only one collector 
C, A can request the regression equation from C, 
this is often not a practical solution to the 
problem because A might want to perform more 
extensive analyses. To expect C to be able to 
or be willing to provide this information might 
be unreasonable. Furthermore, there are instances 
where the data analytic techniques are only 
determined after some preliminary investigations 
are performed. Another reason for describing 
approaches assuming one collector is to see 
which methods are adaptable to more than one 
collector. With two collectors, the regression 
equation cannot be derived by C. 

4. Two Collectors 

We now suppose that there are two collectors 
CC and CA with data sets (I,X) and (J,Y)where 
I=J but X~Y; that is, the da~a sets have identi- 
- -  _ 

cal individuals, but different variables. The 
analyst's objective is to estimate S(X,Y) which 

- -  - -  

needs the merged data set in the senSe-that 
S(X,Y)_ cannot be calculated from (I_~,X) and 

(J~ ,Y_) because A needs to relate an individual's 
- -  

X value to his Y value. By analogy with our 

previous discussions, we seek (_IT,_- ~) and (J_T,YT) 

such that CC is satisfied for (_I,_X) and (_J,_Y) 

(i.e. (!T,__~) n (IT,__ ~) +> (I,_X) ~ (J_,Y)) 

This problem is considerably more complicat- 
ed than the single collector problem because it 
is necessary to provide A with some information 
about I and J so that the data sets can be merged. 
The two collector problem has received little 
attention in the literature. 

We are primarily interested in cases such 
that knowing values of X and Y is sufficient to 
violate confidentiality.. Otherwise, (_X,_Y) #> 
(J_,X) ~ (J_,Y) and confidentiality can be preserved 

with appropriate communication between collectors 
simply by linking the data sets using non-infor- 
mative identifiers (e.g. translate both I and J 

_ 

by the same random amount). 
The statistically interesting case has the 

requirement that (IT,_- ~) and (J_T,YT) ~> (X,Y). 

There are many ways in which this can be accom- 
plished. If we look at the four statements 

IT+I, J_T~J, __~#X, and YT~Y, at least two of them 

must hold in order to preserve confidentiality. 
There are methods that transform identifiers, 
methods that transform data, and methods that 
transform both identifiers and data. 

One possible method for transforming the 
identifiers is to divide I into small groups. 
I and J-T can be generated by each collector 
-T 
randomly permuting the identifiers for each sub- 
group of I. We can then merge the data sets as 
if IT and J-T were the true identifiers. This 

method has many variants because the size of the 
subgroups and the method for creating permutations 
need to be specified. Sometimes the approach 
described in section 3.1 based on ordering one 
file and only merging the group means and vari- 
ances can be adapted to the present case. 

Insofar as the X and Y values are concerned, 
we still may have to create =~ and YT unless 

X ~ (I,X) and Y #> (J_,Y). Otherwise, CC would be 

violated for the X or Y data. One possible 
approach would be to create __~ and YT contamina- 

ting __X and Y as mentioned in the one collector 
case. Further work is needed to address these 
interesting issues. 

5. Conclusions 

Although many results are available to allow 
A to study a univariate data set from one collec- 
tor, there are few methods available when the data 
set is multivariate. The problem of estimation 
from multivariate grouped data, for example, has 
not been extensively treated in the literature. 
The multivariate problem becomes more complicated 
when we are constrained by confidentiality consid- 
erations. Another area where there are only a 
few results is data merging. Designing methodolo- 
gies to obtain information from more than one 
collector is even more complicated because it is 
necessary to combine results for multivariate 
data with data merging techniques and still 
preserve confidential ity. 
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2. 

FOOTNOTES 

It is necessary for the number of sufficient 
statistics to be small so that CC is satisfied. 

This assumes that the a i are properly chosen. 
In cases where the data are reported at diff- 
erent points in time, the interval boundaries 
must be appropriately updated (c.f. [34]). 
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Table i: Efficiencies of Linear Combinations of Order Statistics 

Number o f 
Dis tribution Parameter Percentiles ARE Ref. 

Normal ~ 4 .934 [ 30] 
Normal ~ i0 .981 [ 30] 
Normal ~ (~ known) 6 .893 [ 30] 
Normal ~ and @ 6 .727 [ 30] 

Logistic U (~ known) I .750 [ I0] 
Logistic ~ (~ known) 3 .938 [i0] 
Logistic o (~ unknown) 2 .684 [ I0] 

Pareto B (scale) ; . 5<_y<_5 3 >_. 90 [ 20] 
Pareto B (scale) ; . 5<_y<_5 i0 >.98 [ 20] 

Chi ~ (d.f. known, 1 to 30) 4 >.92 [5] 

Exponential ~ (scale) 4 .927 [ 30] 
Exponential o (scale) 6 .960 [ 31] 

Cauchy ~ 5 .952 [ I] 
Cauchy ~ 9 .978 [ 2] 
Cauchy ~, ~ i0 >. 94 [ 2] _ 

Table 2: Bounds on Variance 

Example i: Variance = .7479 Example 2: Variance = 2.4194 

No Means Means No Means Means 

2 (.6051, .8712) (.7319, .7706) (.5862, 4.6846) (2.3313, 2.6229) 

4 (.7239, .7771) (.7549, .7505) (1.1494, 30422) (2.3962, 2.4646) 

Table 3: Bounds on Percentiles with 8 Groups 

Lower Bound Lower Bound Actual Upper Bound Upper Bound _ 
without x i with xi Value with ~i without i 

0.2000 -0.8165 
0.5000 -0.0206 
0.8000 0.7580 

-0.7997 -0.7938 -0.7856 -0.7537 
-0.0088 -0.0000 0.0078 0.0119 
0.7856 0.7938 0.799~ 0.8]65 

Table 4: Estimating p for ~ b variate Normal: Monte Carlo Results 
(50 replications) for I0 groups, i00 operations 

P 
.9 .75 .5 .25 

ungrouped 
2 S.E. .8986~2.0064 .7503 2.0147 .4975 2.0252 .2351 2.0228 

p 

ground 
gx/gy2S.E. 8984 2.0069 .7504 2.0153 .4958 ±.0268 .2465 2.0244 

Source: N. Spruill, Dissertation to be submitted to Department of 
Statistics, George Washington University 
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