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THE SUPPRESSION PROBLEM 

Statistical disclosure is said to occur when pub- 
lished data values may be combined to produce an 
inference about sensitive datum, or the identity 
or response of a subset of the respondents, which 
reveals "too much." In most applications, it is 
the confidentiality of the identity and responses 
of single respondents which must be maintained 
and the notion of revealing "too much" about a re- 
spondent is captured in the notion of sensitive 
cell. Typically, cell sensitivity is defined in 
terms of linear sensitivity measures, as dis- 
cussed in [SA] and [CX3]. The n-respondent, k% 
dominance rule employed by the U.S. Bureau of--~he 
Census to define and identify potential breaches 
of respondent confidentiality in Economic Cen- 
suses is an example of an upper linear sensitivi- 
ty measure. The (n~k~ rule defines a cell (or 
cell union) to be sensitive if the aggregate of 
the response of n or fewer respondents in the cell 
exceeds k% of the total cell value. In general, 
0 < n < 5 and 50 < k < I00. 

Having established the definition of sensitive 
cell in a particular application, the disclosure 
practitioner next must quantify the notion of re- 
vealing "too much" about respondents in the cell. 
This amounts to establishing a definition of what 
constitutes an acc.eptable estimate of the value 
of a sensitive cell or cell union (i.e., an esti- 
mate of the cell value which can be tolerated) 
and what does not. This concept is generally de- 
fined in terms of an open interval (L (X) ,U (X) ) 
containing the value V(X) of sensitive cell X. 
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Estimates of V(X) which lie within or overlap this 
interval are defined as unacceptable while esti- 
mates of V(X) which strictlly contain or do not 
meet this interval are by definition acceptable 
estimates of V(X). Ideally, to maintain the con- 
cept of statistical disclosure in a uniform man- 
ner between respondents and cells, the real num- 
bers L(X) and U(X) should be defined for each X 
by formulae which are consistent with the operant 
sensitivity criterion. 

Under a complete cell suppression methodology, all 
sensitive cells X must be suppressed, together 
with sufficiently many additional cells (called 
the complementary suppressions) to ensure that 
only acceptable estimates of the values of sen- 
sitive cells (or cell unions) 1 may be obtained by 
combining linear relationships between the sup- 
pressed cells. Ideally, complementary suppres- 
sions should be chosen so that, according to some 
defined measure of information, the information 
lost by suppressing the sensitive cells and the 
chosen set of complementary suppressions is no 
greater than that which would be lost if any oth- 
er complete set of complementary suppressions had 
been chosen instead. As will be discussed in a 
later section of this paper, this ideal, though 
rarely attained, is crucial to controlling the 
suppression process theoretically and operation- 
ally. 

The suppression problem has been described thus 

far as a problem of linear estimation of the val- 
ues of sensitive cells. Complementary suppres- 
sions are made to prevent unacceptably narrow es- 
timates of sensitive cells from being made; and a 
suppression pattern is considered to be complete 
when only acceptable estimates of the values of 
sensitive cells may be made through analysis of 
the pattern. These two principles come together 
when techniques of linear estimation are employed 
to derive inferrable ("actual") estimates of sen- 
sitive cells, so that these inferrable estimates 
may be compared with predetermined acceptable es- 
timates of these cells. If all actual estimates 
are acceptable, then the suppression pattern is 
by definition complete. Otherwise, if at least 
one actual estimate violates the defined accept- 
able limits of protection, then additional com- 
plementary suppression must be performed. 

Two principles emerge from the above characteri- 
zation. The first and more obvious of these is 
that more accurate techniques of linear estima- 
tion may uncover more subtle cases of disclosure 
and should therefore result in increased protec- 
tion of respondent confidentiality. The second 
principle is that, as the central problem in sup- 
pression methodology is that of establishing a 
balance between maintaining respondent confiden- 
tiality and the responsibility to publish as much 
meaningful data as possible to meet the legiti- 
mate information needs of the user community, 
then oversuppression of data can best be mini- 
mized by employing cell suppression techniques 
which are driven by and can operate in tandem 
with the techniques of linear estimation being 
employed. These dual problems of linear estima- 
tion and cell suppression are the main topics of 
this paper. 

TECHNIQUES OF LINEAR ESTIMATION 

The problem of determining optimal actual upper 
and lower estimates of the values of suppressed 
cells or cell unions in a publication system such 
as a census or survey may be structured mathe- 
matically as a linear optimization problem over a 
system of linear constraints, as follows. Each 
cell to be published for a particular statistic 
is assigned its value and each cell whose value 
is to be suppressed for this statistic is re- 
placed by a unique variable in all linear rela- 
tionships between the cell values. The linear 
estimation problem for each suppressed cell is 
then that of maximizing and minimizing the value 
of its corresponding variable to determine the 
smallest interval in which the value of this var- 
iable may vary. The linear estimation problem 
may be divided into two parts. First, we must 
construct a spanning set of linear equations for 
the linear space of all linear equations between 
the cell values derivable from the disaggregation 
relationships between the cells (i.e., a spanning 
set for the linear space of the values of all un- 
ions and differences of the suppressed cells 
which are e_ffectivel~ published). Second, opti- 
mal or adequate techniques of linear estimation 
must be applied to the variables corresponding to 
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the sensitive cells in these equations to deter- 
mine intervals in which their values may vary. 
Moreover, if, for the purpose of analysis and 
suppression strategy, this linear space is to be 
partitioned into subsets, a proper order in which 
to analyze these subsets must be determined so 
that a well-defined procession of linear 
estimation-suppression-linear estimation may be 
invoked. 

The problem of determining a spanning set for 
this linear space is solved by embedding the set 
of disaggregation relationships between the cells 
and their corresponding linear equations within 
the structure of a Boolean lattice. This is ac- 
complished by analyzing the definitional units 
which delimit the cells (such as various geo- 
graphic parameters, age, income, or, for a busi- 
ness establishment, type of business operation) 
to identify generic classes of disaggregation re- 
lationships which exist between the cells. For 
example, if, for a particular statistical item, 
statistical values at the state level are disag- 
gregated by the values corresponding to the con- 
stituent counties of each state, then all such 
disaggregation relationships and their corre- 
sponding linear equations form one class of dis- 
aggregation relationships (equations). Each such 
equation is represented by a node on a lattice 
and two nodes are defined to be hierarchically 
related in the lattice if and only if the equa- 
tion corresponding to the second represents a dis- 
aggregation of a variable which appears as a con- 
stituent variable in the disaggregation represent- 
ed by the first equation. For example, an equa- 
tion which represents the disaggregation of a 
statistical value for a particular state by its 
constituent counties is hierarchically related to 
(above) an equation which represents the disag- 
gregation of one of these constituent counties by 
its county-parts. All other relationships be- 
tween the lattice nodes are defined by transitiv- 
ity, so that the ambient lattice is Boolean. The 
interested reader is referred to [CX3] for a more 
complete description of the lattice procedure. 

The lattice represents the most detailed aggrega- 
tion-disaggregation schema for the system of 
cells and the linear relationships between their 
values derivable from the cell structure. Work- 
ing from the atomic nodes (the "bottom") of the 
lattice (respectively, the maximal nodes of the 
lattice) and proceeding upwards (respectively, 
downwards), one may iteratively construct each 
aggregation (respectively, disaggregation) rela- 
tionship between the cells and its corresponding 
linear equation. In particular, the set of all 
linear equations defined at the lattice nodes 
generates the linear space of all derivable lin- 
ear equations between the cell values, thereby 
solving the first problem previously stated. 
Moreover, the lattice induces a natural ordering 
on the nodes, so that the lattice at the same 
time provides a means of partitioning the entire 
system of linear equations into a collection of 
subsystems (namely, into the sets of equations 
corresponding to the disaggregation of a single 
statistical item at each node) and a natural or- 

dering of these subsystems for linear and suppres- 
sion analysis. 

A global solution to the problem of linear esti- 
mation of the values of suppressed cells may be 
obtained through application of techniques of 
linear programming. T~e linear equations (iden- 
tified above) which span the linear space of all 
linear relationships between the cell variables 
form a constraint system on these variables. To 
determine optimal actual upper and lower esti- 
mates of any variable, say x, it suffices to max- 
imize (respectively, minimize) the objective 
function OBJFUN = x subject to these constraints. 
In most large applications, the number of vari- 
ables and equations involved renders the global 
linear programming approach impractical or im- 
possible to implement. However, if in a particu- 
lar application it is computationally feasible to 
employ linear programming globally and if all 
actual estimates thus obtained for the values of 
the sensitive cells are acceptable, then the en- 
tire system is globally disclosure-free. However, 
if any actual estimate of the value of some sen- 
sitive cell is unacceptable, then further sup- 
pression is required (i.e., more variables must 
be introduced into the system). At this point, 
the strategy of applying a general linear pro- 
gramming package to the disclosure problem ex- 
hibits serious drawbacks, as it does not address 
the following important questions. Which addi- 
tional cell(s) should be suppressed to protect 
this sensitive cell? Do the new suppressions 
adequately protect the sensitive cells, or do 
they also require protection? Does there exist 
a smaller set of covering suppressions which 
would have also protected the sensitive cells, so 
that fewer cells may be suppressed in the system, 
thereby minimizing oversuppression of data? A 
general purpose linear programming package, even 
one with the requisite speed and sophistication 
to completely analyze a large disclosure problem 
globally, provides only best linear estimates of 
prespecified objective functions and no indica- 
tion of the structure of the disclosure problem 
from which sound complementary suppression strat- 
egies could be developed. Therefore, mathematical 
and mathematical programming techniques must be 
developed and applied selectively to a particular 
disclosure problem so that as much relevant com- 
plementary suppression information as possible is 
developed during linear estimation. 

In large disclosure applications, such as a cen- 
sus or major survey, it is computationally in- 
feasible to attempt a global Solution to the 
estimation-suppression problem. In such appli- 
cations, techniques such as the lattice procedure 
must be employed to partition the global problem 
into a sequence of well-defined local problems. 
Optimal or adequate techniques of estimation- 
suppression may then be employed locally to each 
subproblem in turn. If global optimality is 
sought, separation or decomposition results must 
be developed to ensure that global optima are 
also achieved locally. 

The lattice procedure partitions the global prob- 
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lem into a sequence of local problems which may 
be represented in tabular form. Each tabular ar- 
ray represents the disaggregation of a particular 
statistical cell by as many classes of subcells 
as there are independent definitional units into 
which the cell may be disaggregated. For ex- 
ample, if the "parent" cell contains all retail 
sales establishments in a particular state, and 
if data are to be published for this state by 
type of business enterprise and by county, then 
these relationships may be represented by a two- 
dimensional tabular array, each internal cell of 
which represents the total of the values of the 
particular statistical item for all business es- 
tablishments of a given type within a particular 
county. If the tabulated data were further bro- 
ken down by type of sales activity, these tabular 
arrays would be three-dimensional. 

In the discussion to follow on techniques of lin- 
ear estimation, we shall restrict our attention 
to the problem of linear estimation in simple 
tables, i.e., in two-dimensional tabular arrays 
in which the grand total entry is unsuppressed. 
Although no one of the techniques we shall de- 
scribe is totally limited in its applicability to 
simple tables, as simple tables possess a great 
deal of mathematical structure, they provide a 
natural context in which to analyze and compare 
different techniques of linear estimation. 

The problem of determining optimal estimates of 
suppressed entries in simple tables is a trans- 
shipment problem as studied in the field of oper- 
ations research. We refer the reader to [DN] for 
a discussion of transportation and transshipment 
problems, and limit this discussion to a charac- 
terization of their salient properties. 

As an optimization problem, the transshipment 
problem seeks  to  minimize  a g iven  l i n e a r  o b j e c t i v e  

r 
function F. c i x.1 o f  t h e  v a r i a b l e s  x i ,  s u b j e c t  

i= l  

to linear constraints among the x. described by 
--i 

the matrix equation AX = B, where 
t 

X = (x I x 2 ...... Xr) . The mathematical property 

which characterizes transshipment problems is 
that each column in the constraint matrix A con- 
tains precisely two non-zero entries. One--may 
readily observe that the linear estimation prob- 
lem for simple tables (the problem of maximizing 
and minimizing the x.'s subject to the row and 

--I 

column equations in the table) is also of this 
form by writing down its constraint matrix A 
which consists of one column for each suppre-ssed 
entry and one row for each of the row and column 
equations between the suppressed entries in the 
simple table. Each row of A is a vector of 
0's, +l's, and -l's (the entry is 0 if the corre- 
s--pondin--g variabl~ does not appear i--n row or col- 
umn equation in the simple table corresponding to 
this row of A, +I if the variable corresponds to 
an internal entry in the simple table and does 
appear in the corresponding equation, and -I if 
the variable corresponds to a marginal entry in 

the simple table and appears in the corresponding 
equation). As each entry appears in precisely 
two of these equations (i.e., one in its row and 
one in its column in the table), then each column 
of A contains precisely two non-zero entries. In 
general, all entries in the simple table are not 
suppressed, so that there are fewer variables 
than entries. As the values corresponding to 
non-variable entries in the table may be sub- 
tracted from their corresponding row and column 
marginal total entries, they may be considered to 
be "effectively zero." In general, therefore, 
the linear estimation problem for simple tables 
is a transshipment (or transportation) problem 
with zero-restricted variables (see [DN]). 

This characterization of the linear estimation 
problem for simple tables is of considerable im- 
portance theoretically, as it brings with it 
proven techniques for computing these optima a- 
gainst which new techniques may be evaluated. If 
the location pattern of the zero-restricted vari- 
ables is favorable, then the linear estimation 
problem can be solved computationally by trans- 
shipment theory techniques (such as the least- 
cost rule) in a generally efficient manner. 
However, there is no guarantee that this situa- 
tion will be maintained from one table to the 
next. Moreover, straightforward application of 
transshipment theory software to the problem has 
the same drawbacks as previously described for 
the general linear programming approach if addi- 
tional suppression is necessary. Techniques of 
linear estimation, no matter how computationally 
quick, cannot be truly efficient in the disclo- 
sure setting if they do not provide informative 
feedback to the complementary suppression process. 

In [SA], a method is described for obtaining all 
effectively published aggregations with non- 
negative coefficients of the suppressed entries, 
and the observation that this set of aggregations 
forms a convex cone in the first orthant is made. 
From the theory of convex cones, it is well- 
known that this cone may be described as the set 
of all non-negative linear combinations of its 
extremal rays. The extremal rays are finite in 
number and correspond to the set of all elementary 
aggregations of the system, i.e., the minimal gen- 
erating set over the non-negative coefficients of 
the set of all effectively published non-negative 
aggregations of the suppressed entries. There- 
fore, techniques such as the Chernikova algorithm 
may then be employed to compute the extremal rays 
of this cone (see [CH]). Upper estimates of non- 
negative aggregations of the suppressed entries 
may then be obtained by examining non-negative 
linear combinations of minimal sets of elementary 
aggregations which cover the given aggregation. 
Cox [CX4] showed that this procedure is exact, 
i.e., it does in fact produce optimal upper es- 
timates of the values of such aggregations, as an 
effectively published minimal covering aggrega- 
tion which achieves the optimum can always be 
constructed by adding only non-basic variables to 
the given aggregation. 

Also in [CX4], a procedure for applying the con- 
vex cone procedure for achieving maxima of non- 
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negative aggregations in conjunction with tech- 
niques of interval arithmetic to generate minima 
of such aggregations is developed. The procedure 
is as follows. Given a non-negative aggregation 
Z of the suppressed entries, one may generate all 
effectively published minimal covering aggrega- 
tions of Z of the form Z+Y=a by the convex cone 
technique described above. For each such Y, the 
same technique may be employed to determi~ 
b=Max(Y), the maximum value Y may attain. The 
lower estimate Z > a-b then follows. By ex- 

m 

ploiting properties of non-basic variables, 
Cox [CX4] shows that Min(Z), the minimum value of 
Z, must be attained by this procedure. 

Since the cone-interval arithmetic technique of 
linear estimation explicitly constructs effec- 
tively published aggregations, it is capable of 
providing relevant information directly to the 
suppression process. This is a tremendous ad- 
vantage. However, when the number of elementary 
aggregations is large, the technique of employing 
the convex cone-interval arithmetic approach to 
generate minima of only even single suppressed 
entries will exhibit serious computational draw- 
backs due to the complexity and number of the 
covering aggregations to be examined. 

Previously in this paper, we discouraged the ap- 
plication of a general purpose linear programming 
package to the linear estimation problem for two 
principal reasons. In terms of computational 
feasibility and efficiency, even if the global 
problem is relatively small or if it is parti- 
tioned into subproblems, such as single tabular 
arrays, to which a linear programming package may 
be applied individually, this approach may not be 
computationally efficient or cost-effective as 
many pivots and optima must be generated. Also, 
these techniques of linear estimation provide the 
suppression process with minimal information. 
However, techniques of linear programming may be 
applied in a selective manner locally to elimi- 
nate these shortcomings. We briefly sketch this 
procedure. 

The simplex algorithm employs a well-defined se- 
quence of Gaussian eliminations ("pivots") to 
generate the optimum of a linear objective func- 
tion subject to linear constraints by successive- 
ly examining certain vertices of the feasible 
region. These vertices correspond to effectively 
published aggregations of the variables in which 
the basic variables achieve their optimum values, 
(see [DN] for a detailed discussion of the lin- 
ear programming problem and the simplex algo- 
rithm). When a "black-box" linear programming 
package is employed, the user simply provides a 
single objective function with the constraint 
equations and receives the desired optimum as 
output, so that the iterations of the simplex 
algorithm are transparent to the user. In the 
disclosure setting, however, it is precisely the 
set of these intermediate aggregations that are 
of interest as they may yield optima of other ag- 
gregations of interest. Moreover, whenever such 
an aggregation violates the acceptable estimates 
of a particular cell, it must be made available 
to the suppression process for analysis and aug- 

mentation. Therefore, it is desirable to devise 
a computationally efficient procedure which will 
capture these intermediate aggregations. What 
follows is a description of a rudimentary version 
of such a procedure. 

The simplex algorithm minimizes the value of a 
given objective function (aggregation) as fol- 
lows. Beginning with a representation of the 
linear constraints in feasible canonical form 
and a linear aggregation (objective function) Z 
in the non-negative variables x, effectively p~b- 
lished aggregations (linear combinations of the 
constraint equations) are successively added to 
the relation OBJFUN=Z until a linear equation of 
the form, B = OBJFUN-c, is obtained, where B is a 
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non-negative linear combination of non-basic 
variables (and hence achieves zero as its mini- 
mum value) and c is constant. The conclusion 
c = Min(Z) is therefore reached. The reader will 
note that this is equivalent to deriving the 
equation Z-B=c with B and c as above. Analo- 
gously, the simplex algorithm may be employed to 
maximize the aggregation Z by applying the above 
techniques to minimize OBJFUN = (-Z), so that a 
relationship of the form Z+B'=a may be derived, 
with B' a non-negative linear combination of non- 
basic variables and a constant, so that 
a = Max(Z). 

Each change of basis (pivot) operation in the 
simplex algorithm generates a new basic feasible 
solution of the linear program. If the objective 
function is kept fixed and degeneracy of the lin, 
ear program is avoided, then each pivot further 
reduces the value of the objective function until 
optimality is reached. However, the observations 
stated in the preceding paragraph can be applied 
after each pivot operation to identify maxima and 
minima of aggregations other than the given ob- 
jective function. We illustrate this procedure 
for the case of obtaining optima of single vari- 
able objective functions (i.e., single sup- 
pressed entries) in algorithmic form. 

Simplex Technique for Linear 
Estimation of Suppressed Entries 

0. Place the system of constraint equa- 
tions in feasible canonical form. 

I. For the NEXT variable x both of whose 
optima have not been found, set the 
objective function OBJFUN = x (if the 
minimum value of x is sought) or 
OBJFUN = -x (if the maximum value of 
x is sought). If all x have been opti- 
mized, END. 

2. Examine this basis row b_/i ro___~w to see 
if it optimizes any basic variable 
both of whose optima have not already 
been determined, as follows. If a 
row has not changed since the last 
pivot, it is not examined. 

a. Let the NEXT row of the tableau 
to be examined contain the basic 
variable K (with coefficient +I). 
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If this row contains only non- 
negative entries, then the con- 
stant value a of the effectively 
published aggregation corre- 
sponding to this row is equal to 
the maximum value [ may attain. 
If there are no other non-zero 
entries on this row, then the value 
of [ is effectively published, so 
that Min(y) = a also and we may 
GOTO the NEXT row to be examined. 

Moreover, if all entries on 
this row are non-negative and if 
the maximum value b of the corre- 
sponding linear combination of the 
non-basic variables is known, then 
a-b is equal to the minimum value 
of [. This technique is particu- 
larly useful when this linear com- 
bination consists of one non-basic 
variable whose maximum has already 
been determined. 

If Max(y) and Min(y) were at- 
tained in this step, GOTO c. 

b. If the only non-negative entry on 
this row is the +I coefficient of 
y, then the constant value of c 
corresponding to this row is equal 
to the minimum value of y__. 

Moreover, if all entries on 
this row except that correspond- 
ing to [ have non-positive coef- 
ficients, and if the maximum value 
of _d of th____ee negative of the corre- 
sponding linear combination of the 
non-basic variables is known, then 
the maximum value of y__ equals c+d. 
Again, this technique is most use- 
ful when this linear combination 
consists of the negative of a 
single non-basic variable whose 
maximum has already been deter- 
mined. 

c. The minimum value of any non-basic 
variable z must equal zero. 

3. If this basis optimizes OBJFUN, GOTO i. 

4. Pivot according to the simplex algo- 
rithm to improve this non-optimal basic 
feasible solution for the objective 
function OBJFUN. 

5. GOTO 2. 

This algorithm is quite rudimentary and could 
certainly benefit from improvements indicated by 
theoretical insight or practical experience. The 
choice of the method employed to achieve feasible 
canonical form will certainly affect the per- 
formance; and the efficiency of the algorithm 
should vary considerably with the choice of the 
NEXT variable to be analyzed. No optimizing 
principle currently exists for these choices. 

Nor is it clear that an objective function must 
remain fixed until optimality is reached - 
perhaps a change of objective function or a 
brief digression in the analysis to optimize a 
new objective function before returning to the 
original tableau would be worthwhile. Also, if 
estimates are to be made of virtually arbitrary 
sets of aggregations, then a sharpening of this 
technique is necessary. These topics are under 
investigation. Preliminary tests of this algo- 
rithm on simple tables are most encouraging. 
Optima of all suppressed entries in many test 
tables were obtained with less than one-third as 
many pivots as variables once feasible canonical 
form had been achieved. 

COMPLEMENTARY CELL SUPPRESSION 

In the preceding section, a great deal of empha- 
sis was placed upon capturing those effectively 
published aggregations which give rise to unac- 
ceptable estimates of suppressed cells, in order 
to make these aggregations readily available to 
the complementary suppression process. Assuming 
that this has been accomplished, the methodologi- 
cal problem which is immediately posed is that of 
how to best utilize this information. Specif- 
ically, can a complementary suppression methodol- 
ogy be developed which takes full advantage of 
the information provided by these effectively 
published aggregations? 

At the crux of the suppression problem is the 
problem of adequately protecting the sensitive 
cells while minimizin~ the adverse impact of the 
suppression process on the quality and informa- 
tion content of the published data. The infor- 
mation content of a set of publication cells may 
be measured in numerous ways. Many of these 
measures are in some way dependent upon the num- 
ber of cells suppressed. The principle of "not 
suppressing more cells than is necessary" seems 
to be widely accepted. In general, therefore, 
the count of the number of suppressed cells is a 
relevant measure of the adverse impact of the 
disclosure process on the information content of 
the published data. Accordingly, we henceforth 
assume that this principle obtains, and say that 
one suppression pattern is inferior to a second 
if both patterns adequately protect the sensitive 
cells and if the second pattern involves fewer 
complementary suppressions than the first. For 
purpose of this discussion, we define oversup- 
pression as the suppression of more than the 
minimum number of cells necessary to adequately 
protect the sensitive cells, and thereby implic- 
itly assume that the cells are of equal weight in 
terms of their importance for publication. We 
further limit the discussion to the determina- 
tion of optimal or adequate patterns of comple- 
mentary suppression in single tabular arrays. 

Even granting the above restrictions, and assum- 
ing that the operant sensitivity criterion admits 
the existence of corresponding subadditive and 
superadditive upper and lower sensitivity mea- 
sures, few theoretical results exist for the 
problem of minimizing the number of complementary 
suppressions necessary to render an arbitrary 
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tabular array disclosure-free. This is an area 
which requires greater research activity, partic- 
ularly in three and higher dimensions. 

In one dimension, the problem is trivial. As 
there is only one equation corresponding to the 
one-dimensional tabular array, then the subaddi- 
tivity and superadditivity of the sensitivity 
measures imply that the optimal upper estimate of 
a suppressed internal entry is equal to the dif- 
ference between the marginal entry and the total 
of the unsuppressed internal entries in the ar- 
ray if the marginal entry is unsuppressed; and is 
equal to an optimal upper estimate of the margi- 
nal entry if the marginal entry is suppressed. 
If the marginal entry is suppressed, its optimal 
lower estimate is equal to the sum of the unsup- 
pressed internal entries. Optimal lower esti- 
mates of suppressed internal entries are equal to 
zero; and optimal upper estimates of a suppressed 
marginal entry must be determined from other 
tables. Therefore, to protect a suppressed in- 
ternal entry from above (respectively, a sup- 
pressed marginal entry from below), in a one- 
dimensional tabular array it suffices to suppress 
sufficiently many internal cells so that the sum 

' of their values equals or exceeds the amount of 
additional suppression required to adequately 
protect the original internal (marginal) sup- 
pression from above (below). 

Extending this technique directly to two- 
dimensional tabular arrays (tables) results in 
tremendous shortcomings. Effectively, only line 
estimates are being considered, and no account is 
taken of the effect of a complementary suppres- 
sion made in, say, a particular row has upon its 
column. A suppression strategy which takes ad- 
vantage of the transshipment problem attributes 
of the disclosure problem in two-dimensional tab- 
ular arrays is necessary to produce minimal sup- 
pression patterns. Unfortunately, no such strat- 
egy exists. 

To bring the salient mathematical properties of 
the problem to light, we make certain uniformiz- 
ing assumptions. Specifically, we assume that 
any disclosed row or column in the table can be 
rendered disclosure-free once a total of two sup- 
pressions (counting the sensitive cells) have 
been made on the row or column. Under this as- 
sumption, the following theorem of Cox from [CXI] 
completely solves the two-dimensional suppression 
problem for line estimates of suppressed entries, 
and is hence a partial solution to the two- 
dimensional suppression problem. 

THEOREM. Let R denote the number of disclosed 
rows (i.e., rows containing one suppression which 
must be protected) and C denote the number of dis- 
closed columns in a two-dimensional tabular array. 
Assume that any one additional suppression in 
each disclosed row or column will suffice to ren- 
der this row or column disclosure-free. If 
R = C = 1 then at most three (3__) additional sup- 

D 

pressions are necessary to render all rows and 
columns in the table disclosure-free. Otherwise, 
Max (R,C) additional suppressions suffice. 

The proof of this theorem in the general case is 
constructive and proceeds as follows. For 
definiteness, assume R = Max (R,C). Then the 

m 

first C complementary suppressions are to be 
chosen in each of the C disclosed columns, pro- 
vided that each is chosen in a different dis- 
closed row. The remaining (R-C) disclosed rows 
may be protected in any manner whatever (i.e., by 
any (R-C) complementary suppressions each in one 
of these disclosed rows), provided that if one 
such suppression is chosen in a column contain- 
ing no suppressions, then at least one other such 
suppression is chosen in this column as well. 
It results that the number of such minimal sup- 
pression patterns is a combinatorial function of 
Max (R,C) which grows like the factorial, so that 
many such patterns may be identified in general. 
Extensive testing experience with live data by 
the U.S. Bureau of the Census of an automated 
complementary disclosure system for two-dimension- 
al tabular arrays based upon this theorem has 
borne out its practical value. The system ap- 
plies the theorem to attempt to identify an opti- 
mal pattern involving only one additional sup- 
pression in each disclosed row and column. If 
the resulting pattern is not complete, the theo- 
rem is applied repeatedly until a complete pat- 
tern is achieved. 

As previously stated, this theorem is only a par- 
tial solution to the two-dimensional suppression 
problem as, within the confines of its hypothe- 
ses, it only protects sensitive cells in their 
rows and columns by insuring that each row and 
column aggregation of suppressed entries contains 
at least two variables, and does so in the mini- 
mum amount of complementary suppression, but does 
not insure that all effectively published aggre- 
gations of suppressed entries contain at least 
two variables. A corresponding theorem which for 
a given suppression pattern would identify all 
minimal covering suppression patterns in which 
each effectively published aggregation contains 
at least two variables would, within our limiting 
assumptions, completely solve the two-dimensional 
suppression problem. If such a theorem does not 
exist (in the sense that, in general, the mini- 
mum number of complementary suppressions neces- 
sary to complete a given suppression pattern can- 
not be expressed in close form), then a computa- 
tionally efficient algorithm for constructing 
such minimal completing patterns (perhaps one 
based upon branch and bound techniques) must be 
discovered. 

Virtually nothing is known theoretically about 
the suppression problem in three and higher di- 
mensions. The two-dimensional theorem stated 
above may be expressed in terms of the 

I! ! 

Konig-Egervary Theorem 2 which is a statement about 
bipartite graphs. To indicate the difficulty of 
generalizing the two-dimensional suppression 
theorem to three-dimensions, we remark that no 

T! ! 

generalization of the Konig-E~ervary Theorem 
to tripartite graphs exists. 

. . . . . .  

References and footnotes, omitted due to space 
considerations, are available from the author. 
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