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ABSTRACT 2. FUNDAMENTAL APPROACH TO ACREAGE ESTIMATION 

The Landsat-based crop acreage estimates are 
derived by computer-aided analysis of images of 
Landsat-acquired segment areas. These segment 
images are interpreted by the image analyst to 
obtain t ra in ing information and are then c lass i -  
f ied to obtain crop acreages for  the areas. 

This paper presents an overview of the funda- 
mental approach to acreage estimation and dis- 
cusses in some detai l  the LACIE c lass i f i ca t i on  
procedure. The invest igat ions of the error 
sources in the Landsat-based acreage estimation 
are described, as well as the study of the 
dependence of the errors on various causative 
factors.  Some of the resul ts of th is accuracy 
assessment are also presented. 

I .  INTRODUCTION 

The Landsat is a land observatory s a t e l l i t e  
with an onboard mult ispectral  scanner, which 
records ref lected radiance values in four 
channels. To f a c i l i t a t e  the appl icat ion of 
Landsat data, d ig i ta l  values are represented 
as colors and are presented in imagery form. 
The Landsat-based acreage estimates are derived 
by a complex computer-aided analysis of these 
Landsat images. 

Various c lass i f i ca t i on  techniques have been 
developed and discussed in the many a r t i c les  
related to remote sensing and pattern recog- 
n i t ion .  However, the procedure for  which th is 
accuracy assessment is conducted, pa r t i cu la r l y  
the t ra in ing sample determination, has been 
uniquely developed in the Large Area Crop 
Inventory Experiment (LAClE), and only LAClE 
numerical examples are used in discussing the 
resul ts .  

The LAClE is an interagency experiment in the 
use of Landsat and meteorological data to iden- 
t i f y  and inventory crop acreage, y ie ld ,  and 
production. The par t i c ipa t ing  agencies include 
the U.S. Department of Agr icu l ture (USDA), the 
National Aeronautics and Space Administrat ion 
(NASA), and the National Oceanic and Atmospheric 
Administrat ion (NOAA). 

This paper presents an overview of the funda- 
mental approach to acreage estimation and dis- 
cusses in some detai l  the LAClE c lass i f i ca t i on  
procedure. The invest igat ions of the error 
sources in the Landsat-based acreage estimation 
are described, as well as the study of the de- 
pendence of the errors on various causative 
factors.  Some of the resul ts of this accuracy 
assessment are also presented. 

The Landsat-based crop acreage estimates are 
derived from computer-aided analyses of Landsat- 
acquired images of segment areas. A segment is 
a 5 by 6 nautical mile area that is used as a 
sampling uni t  on which estimates of crop acreage 
for a large area are based. Each segment image 
consists of 22 932 pixels.  (The term "p ixe l "  
refers to the basic resolut ion element in the 
image, which corresponds to a l . l - a c r e  area on 
the ground.) 

The use of Landsat data to perform crop acre- 
age estimation depends on the recognit ion of 
pixels by the analyst and the c l a s s i f i e r .  The 
analyst selects t ra in ing  samples by in te rpre t ing  
the Landsat image through the aid of anc i l l a ry  
data such as cropping pract ice data, soi l  data, 
crop calendars, and h is to r i ca l  crop percentages 
for the po l i t i ca l  regions. The c l a s s i f i e r  uses 
the computer to process the t ra in ing information, 
assigning the pixels to the various crops. The 
c lass i f i ca t i on  is treated as a s t r a t i f i c a t i o n  of 
a scene into potent ia l  crop classes. This 
s t r a t i f i c a t i o n  is then used to perform a s t r a t i -  
f ied areal estimate. The crop acreage estimation 
flow for  a segment is shown in Figure I.  

3. CLASSIFICATION PROCEDURE 

When the crop signature (charac ter is t i c  re- 
f lectance of a crop) has been determined by an 
analyst, t ra in ing samples are defined for computer 
c lass i f i ca t i on  of a segment. The fo l lowing sec- 
t ions describe the approach to def in ing t ra in ing 
samples that has been developed and implemented 
in LAClE. 

3.1 Determination of Training Samples 

The image display of a segment has I17 row 
spacings ( l ines)  and 196 column spacings (p ixe ls ) .  
A tota l  of 209 p ixe ls ,  which coincide with a grid 
spacing every l Oth row and every l Oth column of 
a segment, are selected as candidates for image 
in te rpre ta t ion .  Two independently preselected 
random subsamples of these 209 pixels are speci- 
f ied to be interpreted (labeled) by the analyst,  
as fol lows: 

I .  The type-I subsample consists of a minimum of 
30 pixels.  These labeled pixels are used to 
i n i t i a t e  the c luster ing process and to help 
in determining crop labels for  c lusters.  

2. The type-2 subsample consists of approximately 
60 pixels.  These pixels are used to obtain a 
s t r a t i f i e d  areal estimate (see Section 3.3). 

*This material was developed under NASA Con- 
t rac t  NAS 9-15200 and prepared for  the Earth 
Observations Div is ion,  National Aeronautics 
and Space Administrat ion,  Lyndon B. Johnson 
Space Center, Houston, Texas. 

When the type-I and type-2 subsamples are se- 
lected and labeled, c luster ing (computer process- 
ing) is performed to group the pixels according to 
a certain distance measure ( in pa r t i cu la r ,  the ~I 
metr ic) .  In LAClE, the radiance value of each 
pixel in a segment is compared with the value of 
each of the type-I s ta r t ing  p ixe ls ,  which are used 
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to i n i t i a t e  cluster ing. Each pixel is then as- 
signed to the group of the closest star t ing 
pixel .  After al l  the pixels are clustered, the 
mean and standard deviation of each cluster are 
computed, and the cluster map is genera ted by 
the computer. The mean value of each cluster 
is again distance-compared to the radiance value 
of each of the type-I pixels. The cluster is 
given a crop label according to the label of the 
closest type-I pixel .  All  the pixels in a given 
cluster are treated as observations from a crop 
class (or subclass) and are used to estimate 
class (or subclass) s ta t i s t i cs .  These s ta t i s t i cs  
are then used as estimators of the c lass i f i ca t ion  
parameters (means and covariances). 

3.2 Bayes Decision Model 

The c lass i f i ca t ion  procedure of LACIE is a 
Bayes procedure (Anderson 1958) with the assump- 
tions that the loss of each class due to mis- 
c lass i f i ca t ion  is equal and that the underlying 
d is t r ibut ions are normal. 

Let pixel X be the random variable (or random 
vector) having probabi l i ty  density functions 
fw(x) and fN(x) in populations ~W and ~N, respec- 
t i ve l y ,  where x is the observation of X and i s 
drawn from the mixed population {~W, ~N }_ The 
Bayes procedure is to minimize the expected loss 
due to the costs of misc lassi f icat ion.  For a 
given observed x, i f  

qwfw(X)L(N/W) _> qNfN(x)L(W/N) (3.1) 

~W is chosen; otherwise, ~N is chosen; where qN 
is the a p r i o r i  probabi l i ty  that x belongs to 
~N' qw is the a p r i o r i  probabi l i ty  that x belongs 
to ~W, ~(N/W) is the loss due to misclassifying 
x from ~W into ~N, and ~(W/N) is the loss due to 
misclassifying x from ~N into ~W. 

I f  ~(N/W) = ~(W/N), as is assumed in LACIE, 
the decision model expressed in (3.1) becomes 

qwfw(X) _> qNfN(x) (3.2) 

I f  ~W and ~N have subpopulations ~Wi (i = I ,  

2, . - . ,  k) and ~Nj (J = I ,  2, . . . ,  m), respec- 

t i ve l y ,  the decision model in (3.2) is 

~ q w  fw i (x )  _> ~ q N  fN (x) 
i . j j 1 j 

(3.3) 

where qw i and fwi are, respectively, the a p r i o r i  

probabi l i ty  and the probabi l i ty  density function 
that correspond to ~Wi; s im i la r l y  qNj and fNj 

correspond to ~Nj" In the LAClE appl icat ion, 

~Wi (i = I ,  2 , - . . ,  k)and ~N i ( j = I ,  2, . . . ,  m) 
represent the subpopulations ~subclasses) for 
small grains and nonsmall grains, respectively. 
The subclass s ta t i s t i cs  are generated in the 
clustering process as described in Section 3.1. 

When the computer c lass i f ica t ion is made using 
the decision model in (3.3) for a l l  the pixels in 
a segment, the small-grain proportion estimate 
PW and the nonsmall-grain proportion estimate PN 
are calculated by 

N W 
A _ 

PW N (3.4) 

and 

N N 
A _ 

PN N (3.5) 

where N is the total number of pixels in a 
segment ( i . e . ,  22 932), N W is the number of 
pixels c lassi f ied as small grains, and N N is 
the number of pixels c lassi f ied as nonsmall 
grains. Consequently, the acreage estimate 
for small grains, ~W, can be approximated by 

~W = I . I  acres x N W 

3.3 S t ra t i f i ed  Areal Estimation 

(3.6) 

Since experience has shown that there is bias 
in PW (the computer-classified areal estimate), 
the s t r a t i f i ca t i on  technique is applied af ter  
the c lass i f i ca t ion .  The s t r a t i f i ed  areal es t i -  
mate for small grains is obtained by combining 
the results of the type-2 sample with the di rect  
computer c lass i f ica t ion results,  using the 
following formula" 

: hW~ W + hN~ N (3.7) 

where ~W is the number of type-2 pixels called 
small grains by the analyst and c lass i f ied small 
grains by the computer divided by the number of 
type-2 pixels c lass i f ied by the computer as 
small grains, and h N is the number of type-2 
pixels called small grains by the analyst and 
c lassi f ied as nonsmall grains by the computer 
divided by the number of type-2 pixels c lass i f ied 
by the computer as nonsmall grains. 

I t  is clear that the s t r a t i f i ca t i on  is not 
made according to the true ground-observed in- 
formation. That is,  the bias correction factors 
~W and ~N w i l l  not correct the mislabeling of 
pixels by the analyst. 

4. FIELD DATA ACQUISITION 

In order to assess the accuracy of a Landsat- 
based crop acreage estimate at the segment level ,  
the f i e ld  observation data for the segment must 
be acquired. The segments which are designated 
for f i e ld  data acquisi t ion are chosen at random 
from the sample segments. The ident i ty  of these 
selected segments is withheld from the analysts 
so that these segments can be treated the same 
as the other segments. Then, the high-resolution 
color- inf rared aerial photography over these 
segments is acquired before harvesting of the 
crop of primary interest .  Simultaneously, f i e ld  
teams col lect  ground observation data for these 
segments. The f i e ld  team labels a l l  the f ie lds 
on a pre-prepared f ie ld  overlay according to the 
ground-observed crop types and makes a general 
appraisal of crop conditions in the segment. The 
application of ground-observed data is described 
in Sections 5 and 6. Figure 2 shows the f ie ld  
data acquisit ion flow. 
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5. RESULTS OF COMPARISONS BETWEEN PROPORTION 
ESTIMATES AND GROUND-OBSERVED PROPORTIONS 

When the f i e ld  data become avai lable,  the 
ground-observed crop proportions can be obtained 
through the use of computer d ig i t i za t i on  or man- 
ual planimetry. A study comparing the LAClE 
small-grain proportion estimates obtained from 
the s t r a t i f i ed  areal estimator and the corre- 
sponding ground-observed proportions was con- 
ducted for both winter and spring small grains 
based on the ground-observed segments. Ninety- 
one ground-observed segments for winter small 
grains were randomly selected from the states 
that are the major producers of winter small 
grains; namely, Colorado, Kansas, Nebraska, 
Oklahoma, Texas, Montana, and South Dakota. A 
total of 53 ground-observed segments for spring 
small grains were randomly selected from the 
U.S. northern Great Plains states, which consist 
of Minnesota, Montana, North Dakota, and South 
Dakota. The ground-observed proportions were 
compared with both the early-season and late-  
season proportion estimates for each type of the 
small grains. Only 77 early-season proportion 
estimates were avai lable for the 91 winter 
small-grain ground-observed segments; 31 were 
available for the 53 spring small-grain ground- 
observed segments. 

Table 1 and Figure 3 show that on the average 
the proportions were s ign i f i can t l y  underestimated 
for both winter and spring small grains at the 
lO-percent level.  However, the bias due to clas- 
s i f i ca t ion ,  D, decreased f rom-9 .8  percent in 
the early season to -2.4 percent in the late 
season for the winter small grains and decreased 
f rom-3.8  percent to -3.3 percent for the spring 
small grains. The primary reason for this large 
underestimation during the early season is that 
the small-grain signatures are not well-developed 
at this time, and as a resul t ,  some small-grain 
t ra in ing pixels were mislabeled as other crops by 
the analyst. When a s ign i f i can t  improvement in 
detectable small-grain signatures is noted in the 
later  season or some backup acquisit ions become 
available for multitemporal in terpretat ion,  the 
LAClE estimates begin to approach the ground- 
observed proportions. 

The plots in Figure 3 also indicate an over- 
al l  trend toward a negative value of PW PW as 
PW increases. In other words, LAClE tends to 
underestimate the true small-grain proportion 
when that proportion is large. 

In another interest ing study, a comparison is 
made between small-grain areal estimation errors 
that resulted from the computer c lass i f i ca t ion  
estimation, s t r a t i f i e d  areal estimation, and 
random sample estimation from the type-2 pixels.  
The mean square errors for these three types of 
areal estimates are tabulated in Table 2 for the 
States of North Dakota and Montana. This table 
shows that the mean square error of the s t r a t i f i ed  
areal estimate is much smaller than that of the 
computer c lass i f i ca t ion  estimate. However, the 
mean square error of the s t r a t i f i e d  areal estimate 
is very close to that of the random sample est i -  
mate from the type-2 labeled pixels. 

6. RESULTS OF LABELING EVALUATION 

The accuracy of the s t r a t i f i e d  areal estimate 
is c r i t i ca l  ly dependent on correct labeling of 
the type-2 pixels by the analyst. The s t r a t i f i ed  
random sampling technique provides an optimal 
estimate provided that the analyst can correct ly 
ident i fy  the type-2 pixe.ls. Thus, this labeling 
evaluation study concentrates on the type-2 
pixels. 

Each segment is evaluated by checking for con- 
sistency and discrepancy between analyst and 
ground-observed labels. The confusion matrix is 
calculated from type-2 labeled pixels for a set 
of ground-observed segments. This matrix is used 
for quant i tat ive examination since i t  contains 
the probabi l i t ies  of correct labeling and mis- 
labeling for both small grains and nonsmall 
grains. Spec i f i ca l ly ,  the confusion matrix M is 
defi ned by 

M = [ p(W/W) p(N/W)] 
p(W/N) p(N/N) 

where p(W/W) is the probability of correctly 
labeling small-grain pixels as small grains, 
p(N/N) is the probabi l i ty  of correct ly label ing 
nonsmall-grain pixels as nonsmall grains, 
p(W/N) is the probabi l i ty  of mislabeling nonsmall- 
grain pixels as small grains, and p(N/W) is the 
probabi l i ty  of mislabeling small-grain pixels as 
nonsmall grains. When the areal estimate is made 
for small grains, p(W/N) is called the commission 
error,  and p(N/W) is the omission error.  

The fol lowing results were obtained from the 
type-2 samples of 18 ground-observed segments in 
North Dakota for crop year 1976-77. 

341 114 Ol 
= 0.750 455 - 0.25 

M = 30 533 94-" 
5--6-3 = 0.053 563 - 0 

This matrix shows that 75 percent of the type-2 
small-grain pixels and 94.7 percent of the type-2 
nonsmall-grain pixels were correct ly  labeled by 
the analyst. In other words, in the State of 
North Dakota, the labeling error for small grains 
is larger than that for nonsmall grains. The 
causative factors for labeling errors in North 
Dakota are investigated by evaluating such data 
as the acquisi t ion history,  individual f i e ld  size, 
pixel locat ion, and signature qual i ty .  Table 3 
presents the error sources and the percents of 
commission error and omission error caused by 
each error source. 

7. MAJOR ERROR SOURCES IN ACREAGE ESTIMATION 

The major error sources in the acreage est i -  
mates at the segment level have been ident i f ied  
through the study in various experiments. These 
major error sources include: 

I .  Missing key acquisi t ions, which generally 
cause the analys~ to be unable to separate 
the signatures of competing crops and thus 
lead to mislabeled t ra in ing data. 
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. Abnormal signature development, which is 
often caused by such problems as late 
planting, drought, crop rotation, disease, 
and soil va r iab i l i t y .  

3. Inadequacy of the Landsat scanner in re- 
solving small f ie lds.  
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TABLE I .  COMPARISON OF PROPORTION ESTIMATES 
AND GROUND-OBSERVED PROPORTIONS FOR 

CROP YEAR 1976-77 

90-percent 
Type of Acquisition M PW D Sg confidence 

small grains PW l im i t s  fo r  PD 

Winter 

Spring 

Early (p r i o r  

to February) 

Late (p r io r  

to October) 

Early (p r io r  

to August) 

Late (p r io r  

to October) 

77 15.6 25.3 -9.8 1.7 ( -12.6,  -7.1 )* 

91 22.2 24.6 -2.4 0.7 ( -3 .6 ,  -1 .2 ) *  

31 15.3 19.1 -3.8 1.5 ( -6 .3 ,  -1 .3 ) *  

53 15.7 18.9 -3.3 0.9 ( -4 .8 ,  -1 .8 ) *  

LEGEND: 

M - Number of ground-observed segments avai lab le  

PW - Average of smal l -gra in proport ion estimates obtained from the 

s t r a t i f i e d  areal est imator 

PW - Average ground-observed smal l -grain proport ion 

U - PW - PW 

S~ - Standard er ror  of 

PD - Population 

* - PD not s i g n i f i c a n t l y  d i f f e r e n t  from zero at lO-percent level 

TABLE 2. MEAN SQUARE ERRORS FOR COMPUTER 
CLASSIFICATION ESTIMATION, STRATIFIED 
AREAL ESTIMATION, AND RANDOM SAMPLE 

ESTIMATION FROM TYPE-2 PIXELS 

Computer S t r a t i f i e d  Random 
State I~umber of  c l a s s i f i c a t i o n  areal sample 

segments used estimate estimate estimate 

Nortil Dakota 22 235.4 168.2 170.5 

Montana 12 8G. 5 55.4 42.2 

TABLE 3. NORTH DAKOTA LABELING ERRORS 

Error source Omission er ro r  Commission er ror  
(percent) (percent) 

I n s u f f i c i e n t  acqu is i t ions  13.2 33.3 

Fields too narrow I f . 4  3.3 

Border pixel 28.9 23.3 

Abnormal s ignature 21.1 16.7 

FIGURE I.  LANDSAT-BASED CROP ACREAGE 
ESTIMATION FLOW 
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FIGURE 3. PLOT OF PROPORTION ESTIMATION ERRORS 
VERSUS GROUND-OBSERVED PROPORTIONS 
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