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ABSTRACT

The Landsat-based crop acreage estimates are
derived by computer-aided analysis of images of
Landsat-acquired segment areas. These segment
images are interpreted by the image analyst to
obtain training information and are then classi-
fied to obtain crop acreages for the areas.

This paper presents an overview of the funda-
mental approach to acreage estimation and dis-
cusses in some detail the LACIE classification
procedure. The investigations of the error
sources in the Landsat-based acreage estimation
are described, as well as the study of the
dependence of the errors on various causative
factors. Some of the results of this accuracy
assessment are also presented.

1. INTRODUCTION

The Landsat is a land observatory satellite
with an onboard multispectral scanner, which
records reflected radiance values in four
channels. To facilitate the application of
Landsat data, digital values are represented
as colors and are presented in imagery form.
The Landsat-based acreage estimates are derived
by a complex computer-aided analysis of these
Landsat images.

Various classification techniques have been
developed and discussed in the many articies
related to remote sensing and pattern recog-
nition. However, the procedure for .which this
accuracy assessment is conducted, particularly
the training sample determination, has been
uniquely developed in the Large Area Crop
Inventory Experiment (LACIE), and only LACIE
numerical examples are used in discussing the
results.

The LACIE is an interagency experiment in the
use of Landsat and meteorological data to iden-
tify and inventory crop acreage, yield, and
production. The participating agencies include
the U.S. Department of Agriculture (USDA), the
National Aeronautics and Space Administration
(NASA), and the National Oceanic and Atmospheric
Administration (NOAA).

This paper presents an overview of the funda-
mental approach to acreage estimation and dis-
cusses in some detail the LACIE classification
procedure. The investigations of the error
sources in the Landsat-based acreage estimation
are described, as well as the study of the de-
pendence of the errors on various causative
factors. Some of the results of this accuracy
assessment are also presented.

*This material was developed under NASA Con-
tract NAS 9-15200 and prepared for the Earth
Observations Division, National Aeronautics
and Space Administration, Lyndon B. Johnson
Space Center, Houston, Texas.
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2. TFUNDAMENTAL APPROACH TO ACREAGE ESTIMATION

The Landsat-based crop acreage estimates are
derived from computer-aided analyses of Landsat-
acquired images of segment areas. A segment is
a 5 by 6 nautical mile area that is used as a
sampling unit on which estimates of crop acreage
for a large area are based. Each segment image
consists of 22 932 pixels. (The term "pixel®
refers to the basic resolution element in the
image, which corresponds to a 1.1-acre area on
the ground.)

The use of Landsat data to perform crop acre-
age estimation depends on the recognition of
pixels by the analyst and the classifier. The
analyst selects training sampies by interpreting
the Landsat image through the aid of ancillary
data such as cropping practice data, soil data,
crop calendars, and historical crop percentages
for the political regions. The classifier uses
the computer to process the training information,
assigning the pixels to the various crops. The
classification is treated as a stratification of
a scene into potential crop classes. This
stratification is then used to perform a strati-
fied areal estimate. The crop acreage estimation
flow for a segment is shown in Figure 1.

3. CLASSIFICATION PROCEDURE

When the crop signature {characteristic re-
flectance of a crop) has been determined by an
analyst, training samples are defined for computer
classification of a segment. The following sec-
tions describe the approach to defining training
samples that has been developed and implemented
in LACIE.

3.1 Determination of Training Samples

The image display of a segment has 117 row
spacings (1ines) and 196 column spacings (pixels).
A total of 209 pixels, which coincide with a grid
spacing every 10t% row and every 10¢4 column of

a segment, are selected as candidates for image
interpretation. Two independently preselected
random subsamples of these 209 pixels are speci-
fied to be interpreted (labeled) by the analyst,
as follows:

1. The type-1 subsample consists of a minimum of
30 pixels. These labeled pixels are used to
initiate the clustering process and to help
in determining crop labels for clusters.

2. The type-2 subsample consists of approximately
60 pixels. These pixels are used to obtain a
stratified areal estimate (see Section 3.3).

When the type-1 and type-2 subsamples are se-
lected and labeled, clustering (computer process-
ing) is performed to group the pixels according to
a certain distance measure (in particular, the %
metric). In LACIE, the radiance value of each
pixel in a segment is compared with the value of
each of the type-1 starting pixels, which are used



to initiate clustering. Each pixel is then as-
signed to the group of the closest starting
pixel. After all the pixels are clustered, the
mean and standard deviation of each cluster are
computed, and the cluster map is generated by

the computer. The mean value of each cluster

is again distance-compared to the radiance value
of each of the type-1 pixels. The cluster is
given a crop label according to the label of the
closest type-1 pixel. A1l the pixels in a given
cluster are treated as observations from a crop
class (or subclass) and are used to estimate
class (or subclass) statistics. These statistics
are then used as estimators of the classification
parameters (means and covariances).

3.2 Bayes Decision Model

The classification procedure of LACIE is a
Bayes procedure (Anderson 1958) with the assump-
tions that the loss of each class due to mis-
classification is equal and that the underlying
distributions are normal.

Let pixel X be the random variable (or random
vector) having probability density functions
fy(x) and fy(x) in populations my and my, respec-
tively, where x is the observation of X and is
drawn from the mixed population {m, ﬂN}. The
Bayes procedure is to minimize the expected loss
due to the costs of misclassification. For a
given observed x, if

9Ty ORI > qufy ()200/M)  (3.1)

Ty 1s chosen; otherwise, my is chosen; where qy
is the a priori probability that x belongs to
Tns Gy 1S the a priori probability that x belongs
to my, L(N/W) is the loss due to misclassifying
x from my into my, and &L(W/N) is the Toss due to
misclassifying x from my into my.

If 2(N/W) = 2(W/N), as is assumed in LACIE,
the decision model expressed in (3.1) becomes

qwfw(x) > quN(X) (32)

If my and my have subpopulations i (i=1,
2, *++, k) and N (j =1, 2, <=+, m), respec-
tively, the decision model in (3.2) is

Z a, Fu, ) 2 Z W, iy, )
~ i ~ 5

where qwi and fwi are, respectively, the a priori

(3.3)

probability and the probability density function
that correspond to s similarly qu and fNj

correspond to my.. In the LACIE application,
s (i=1,2, ==, K)anday. (J=1,2, +++, m)

represent the subpopulations %subc1asses) for
small grains and nonsmall grains, respectively.
The subclass statistics are generated in the
clustering process as described in Section 3.71.
When the computer classification is made using
the decision model in (3.3) for all the pixels in
a segment, the small-grain proportion estimate
6w and the nonsmall-grain proportion estimate 6N
are calculated by

161

N
A _ W
Pw =W (3.4)
and
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where N is the total number of pixels in a
segment (i.e., 22 932), Ny is the number of
pixels classified as small grains, and Ny is
the number of pixels classified as nonsmall
grains. Conseguently, the acreage estimate
for small grains, Ay, can be approximated by

Aw = 1.1 acres x Nw (3.6)

3.3 Stratified Areal Estimation

Since experience has shown that there is bias
in py (the computer-classified areal estimate),
the stratification technique is applied after
the classification. The stratified areal esti-
mate for small grains is obtained by combining
the results of the type-2 sample with the direct
computer classification results, using the
following formula:

A A

WP © APy (3.7)

P =2

where Xy is the number of type-2 pixels called
small grains by the analyst and classified small
grains by the computer divided by the number of
type-2 pixels classified by the computer as

small grains, and Ay is the number of type-2
pixels called small grains by the analyst and
classified as nonsmall grains by the computer
divided by the number of type-2 pixels classified
by the computer as nonsmall grains.

It is clear that the stratification is not
made according to the true ground-observed in-
formation. That is, the bias correction factors
Ny and Ay will not correct the mislabeling of
pixels by the analyst.

4. FIELD DATA ACQUISITION

In order to assess the accuracy of a Landsat-
based crop acreage estimate at the segment level,
the field observation data for the segment must
be acquired. The segments which are designated
for field data acquisition are chosen at random
from the sample segments. The identity of these
selected segments is withheld from the analysts
so that these segments can be treated the same
as the other segments. Then, the high-resolution
color-infrared aerial photography over these
segments is acquired before harvesting of the
crop of primary interest. Simultaneously, field
teams collect ground observation data for these
segments. The field team labels all the fields
on a pre-prepared field overlay according to the
ground-observed crop types and makes a general
appraisal of crop conditions in the segment. The
application of ground-observed data is described
in Sections 5 and 6. Figure 2 shows the field
data acquisition flow.



5. RESULTS OF COMPARISONS BETWEEN PROPORTION
ESTIMATES AND GROUND-OBSERVED PROPORTIONS

When the field data become available, the
ground-observed crop proportions can be obtained
through the use of computer digitization or man-
ual planimetry. A study comparing the LACIE
small-grain proportion estimates obtained from
the stratified areal estimator and the corre-
sponding ground-observed proportions was con-
ducted for both winter and spring small grains
based on the ground-observed segments. Ninety-
one ground-observed segments for winter small
grains were randomly selected from the states
that are the major producers of winter small
grains; namely, Colorado, Kansas, Nebraska,
Oklahoma, Texas, Montana, and South Dakota. A
total of 53 ground-observed segments for spring
small grains were randomly selected from the
U.S. northern Great Plains states, which consist
of Minnesota, Montana, North Dakota, and South
Dakota. The ground-observed proportions were
compared with both the early-season and Tate-
season proportion estimates for each type of the
small grains. Only 77 early-season proportion
estimates were available for the 91 winter
small-grain ground-observed segments; 31 were
available for the 53 spring small-grain ground-
observed segments.

Table 1 and Figure 3 show that on the average
the proportions were significantly underestimated
for both winter and spring small grains at the
10-percent level. However, the bias due to clas-
sification, D, decreased from -9.8 percent in
the early season to -2.4 percent in the late
season for the winter small grains and decreased
from -3.8 percent to -3.3 percent for the spring
small grains. The primary reason for this large
underestimation during the early season is that
the small-grain signatures are not well-developed
at this time, and as a result, some small-grain
training pixels were mislabeled as other crops by
the analyst. When a significant improvement in
detectable small-grain signatures is noted in the
later season or some backup acquisitions become
available for multitemporal interpretation, the
LACIE estimates begin to approach the ground-
observed proportions.

The plots in Figure 3 also indicate an over-
all trend toward a negative value of ﬁw - py as
py increases. In other words, LACIE tends to
underestimate the true small-grain proportion
when that proportion is large.

In another interesting study, a comparison is
made between small-grain areal estimation errors
that resulted from the computer classification
estimation, stratified areal estimation, and
random sample estimation from the type-2 pixels.
The mean square errors for these three types of
areal estimates are tabulated in Table 2 for the
States of North Dakota and Montana. This table
shows that the mean square error of the stratified
areal estimate is much smaller than that of the
computer classification estimate. However, the
mean square error of the stratified areal estimate
is very close to that of the random sample esti-
mate from the type-2 labeled pixels.
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6. RESULTS OF LABELING EVALUATION

The accuracy of the stratified areal estimate
is critically dependent on correct labeling of
the type-2 pixels by the analyst. The stratified
random sampling technique provides an optimal
estimate provided that the analyst can correctly
identify the type-2 pixels. Thus, this labeling
evaluation study concentrates on the type-2
pixels.

Each segment is evaluated by checking for con-
sistency and discrepancy between analyst and
ground-observed Tabels. The confusion matrix is
calculated from type-2 labeled pixels for a set
of ground-observed segments. This matrix is used
for quantitative examination since it contains
the probabilities of correct labeling and mis-
labeling for both small grains and nonsmall

grains. Specifically, the confusion matrix M is
defined by
M= [p(W/w) p(N/N)}
p(W/N)  p(N/N)

where p(W/W) is the probability of correctly
Tabeling small-grain pixels as small grains,
p(N/N) is the probability of correctly labeling
nonsmall-grain pixels as nonsmall grains,
p(W/N) is the probability of mislabeling nonsmall-
grain pixels as small grains, and p(N/W) is the
probability of mislabeling small-grain pixels as
nonsmall grains. When the areal estimate is made
for small grains, p(W/N) is called the commission
error, and p(N/W) is the omission error.

The following results were obtained from the
type-2 samples of 18 ground-observed segments in
North Dakota for crop year 1976-77.

341 114 _

55 © 0.750 755 © 0.250
M =

30 _ 533 _

tE3 - 0.053 63 0.947

This matrix shows that 75 percent of the type-2
small-grain pixels and 94.7 percent of the type-2
nonsmall-grain pixels were correctly labeled by
the analyst. In other words, in the State of
North Dakota, the labeling error for small grains
is larger than that for nonsmall grains. The
causative factors for labeling errors in North
Dakota are investigated by evaluating such data
as the acquisition history, individual field size,
pixel Tlocation, and signature quality. Table 3
presents the error sources and the percents of
commission error and omission error caused by
each error source.

7. MAJOR ERROR SOURCES IN ACREAGE ESTIMATION

The major error sources in the acreage esti-
mates at the segment Tevel have been identified
through the study in various experiments. These
major ervor sources include:

1. Missing key acquisitions, which generally
cause the analyst to be unable to separate
the signatures of competing crops and thus
lead to mislabeled training data.



2. Abnormal signature development, which is
often caused by such problems as late
planting, drought, crop rotation, disease,
and soil variability.

3. Inadequacy of the Landsat scanner in re-
solving small fields.
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FIGURE 3. PLOT OF PROPORTION ESTIMATION ERRORS
VERSUS GROUND-OBSERVED PROPORTIONS
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