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ABSTRACT. A genuine small sample theory for post- 
stratification is developed in this paper° This 
includes the definition of a ratio estimator of 
the population mean Y, the derivation of its bias 
and its exact variance and a discussion of vari- 
ance estimation° The estimator has both a within 
strata component of variance which is comparable 
with that obtained in the proportional allocation 
stratified sampling and a between strata component 
of variance which will tend to zero as the overall 
sample size becomes large. Certain optimality 
properties of the estimator are obtained° The 
generalization of post-stratification from the 
simple random sampling to post-stratification used 
in conjunction with stratification and multi-stage 
designs is discussed° 

i. INTRODUCTION. As is well known, strata are 
defined as nonoverlapping and exhaustive subsets 
of the units of a population with the following 
properties: (a) The total number of units N h in 
stratum h of the population is known; (b) It is 
possible to identify in advance of sampling the 
stratum h to which each unit belongs and pre- 
scribed sample sizes nh~Oare drawn from stratum 
h. "Post-strata" differ from strata in the sense 
that condition (b) is no longer satisfied. How- 
ever, it is assumed that after sampling it is pos- 
sible to identify for each elementary unit the 

post-stratum, h, to which it belongs. 

The literature on post-stratification is almost 
exclusively confined to the case of a simple ran- 
dom sample of size n drawn from the population° 
If we define by n h the number of units which "hap- 
pen to fall" into a poststratum h then the n h be- 
come random variables following a hypergeometric 
distribution° It is well known that the litera- 
ture on post-stratification is essentially con- 
fined to a situation where the probability that 
n h = 0 can be assumed to be negligible° Accord-_ 
ingly, the estimator of the population mean Y con- 
sidered is of the form 

^ L Nh_ 
y = Y --~ y~ (I.I) 

h=l 

where the Nh/N are the known post-strata propor- 
tions in th~ population and y.' is the ordinary 
sample mean of the units falllng into post-stratum 

. . . .  n -' h provlded n h > i. The deflnltlo of Yh for the 

case n h = O varies. As is well known, if the 
probabllity that n h = 0 is negligibly small the 
above estimator is approximately unbiased and has 
a variance which is approximately equal to that of 

a stratified estimator for proportional alloca- 

tionso 

If the above approximations are accepted it 
would follow that all the benefits derived from 
stratification and proportional allocation can be 
attained by the above device of post-stratifica- 
tiono Unfortunately, experience with post-strati- 
fication when the sample size n is comparatively 
small and the number of strata is comparatively 

large is distinctly disappointing. 

It is therefore the purpose of this paper to 
develop a genuine small sample theory for post- 
stratification. This will include the precise 
definition of the estimator of Y, the derivation 
of its bias and its exact variance and a discus- 
sion of variance estimation. It is not surpris- 
ing that our findings will show that our post- 
stratified estimator will have both a within 
strata component of variance which is comparable 
with that obtained in proportional allocation 
stratified sampling but also between strata com- 
ponent of variance which will tend to 0 as the 
overall sample size n becomes large to an order 
which is O(n-2). The derivation of our compact 
and exact variance formulas for both components 
of variance enables us to derive certain optimal- 
ity properties of our estimator together with 
recommendations for sampling strategies. 

In the last section we also discuss the gener- 
alization of post-stratification for survey de- 
signs that are more realistic than a simple ran- 
dom sample. These include post-stratification 
used in conjunction with stratification and 
multi-stage designs. However, these generaliza- 
tions are only discussed in generality and not 
spelled out in detail. 

2. A RATIO ESTIMATOR. Throughout this paper, 
we consider only a simple random sample of size n 
from a population of size N with L strata (L > 2). 
However, generalizations of the design are con- 
sidered in section 6. Defining the "indicator 
variables" 

~ i if at least one unit of the 
sample of size n is in stratum h 

a h (2.1) 
O otherwise, 

we start with an unbiased estimator of Y of the 
form 

=Y ahPhYh/E(a h) (2.2) 

h) (n where P = N. /N, E_ ) I - ,NL,N (a h / and the 
summationh ex~ends over all strata. When a = O, 
Yh can be defined arbitrarily as a constant, say, 

Yh' the population mean of stratum h, since the 
corresponding term in (2.2) is zero. The unbi- 
asedness of this estimator follows from 

E(~) = E(E(y)) = E(YahPhYh/E(ah) ) = Y (2.3) 
1 2 

where E is the conditional expectation given 
(n , 2 ...,nL) and El is the expectation over 

(n ..... nL). Similarly, we define variances V 
I 

and V and covariances Coy and Cov. Note a simi- 
2 i 2 

larity of our estimator to the well-known 
Horvitz-Thompson estimator of Y in a random sam- 
ple with unequal probabilities of selection. 

A serious drawback of ~ is that its variance 
depends on the origin of the y values. To demon- 
strate this we consider a translation of each y 
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to y + c where c is an arbitrary constant and the 
estimator of Y + c becomes 

(y + c) = Y ahPh(Yh+C) /E(ah)= ~ + c~ (2.4) 

where x = Y.ahPh~h/E(ah) = Y aheh/E(ah) (2.5) 

and the variable Xhi = I for all population units. 

Incidentally, x is an unbiased estimator of X = I. 
Now clearly we have for the variance 

V(y~c) = V(y) + c2V(~) + 2cCov(y,x) (2.6) 

and it is obvious that V(y + c) can be made arbi- 
trarily large by increasing c sufficiently. This 

is due to the fact that ~ is not a constant. 

In order to eliminate the dependence of the 
variance on the origin of the y values we turn 
our attention to a ratio estimator of Y which is 
de fined by 

ahPh~h/E(a h) (2.7) 

= (y/x)X = y/x = 
ah Ph/E (a h ) 

The variance of R is unaffected by translation of 
y values since from (2.2) 

(y + c)/x = (y/x) + c. (2.8) 
Now the ratio estimator (2.8) will in general 

be slightly biased. However in the particular 
case where all strata proportions P are equal 

h 
our ratio estimator is shown tobe unbiased in 
Appendix II. In other cases the bias of R as an 
estimator of Y is of the order of magnitude 

2 n n+l 
O(PhQ h) or O(PhQ h ) where Qh = I - Ph (see Ap- 

pendix I). Therefore, even for a moderate sample 
size n the bias is negligible provided the Ph are 

-I 
greater than or equal to cn . 

If the number of strata is large and all P are 
b 

small, while n is moderate, we show in Appendlx I 

that the bias is of order O(n L -2) orO(n2L-3). 
Once again the bias is negligible. The bias can 
be exactly evaluated for a small number of strata 
by direct computation. 

3. THE EXACT VARIANCE OF THE RATIO ESTIMATOR. 

There are two components of variance resulting 
from the well-known relation 

V(R) = V(E(R)) + E(V(R)) (3.I) 
1 2 1 2 

where E and V are conditionditional expectations 
2 2 

and variances given a set of n h and E, V are ex- 
1 I 

pectations and variances over the n h. The terms 

V(E(R)) and E(V(R)) are called the between strata 
1 2 

component and the within strata component of vari- 

ance of R and denoted as V(R) B and V(R) W respec- 

tively. 

First we derive the between strata component in 
a compact form which requires recasting R in a 
simple form as 

= F DN~ h (3.2) 

ahPh/E (a h ) 
where b h = L 

Y akek/E (a k) 
k=l 

Since F bh = I, we obtain for any fixed h 

E Cov(b h,,b h) = -V(DN). 

h'~h 

Since E(R) = YbhE(Yh ) =y bhYh , 
2 

we find that, by virtue of (3.4) 

v(R) 

(3.3) 

(3.4) 

(3.5) 

= V(E(R) ) 
B IL2 L 

= Y" V(bh)Y2 + Y' C°V(bh"bh)Yh'Yh 
h=l h ' ~h=l 

(3.6) 

L m(bh,)E(b h) - E(bh,bh)(Yh _Yh)2 
= E 2 

h '#h=l 
The within strata component of variance R is 

given by 
~ 2 

V(R) w = E(V(R)) = E(YbhV(Yh)) 
1 2 1 (3.7) 

2 2 2 2 

=F.E'(bh/nh)E(ah)Sh -YE(bh)Sh/N h 

where E' stands for the conditional expectation 
2 is the population mean square given n h _> I and S h 

of stratum h, i.e. 

N h 

Sh2 = Y(Yhi - ~h )/(Nh - i). (3.8) 

i=l 

In the particular case where all Ph are equal, 
the components of variance of R reduced (see Ap- 
pendix II) to the very simple forms 

V(R) B = EE(I/~) - (I/L)~ S 2 B (3.9) 

and V(R) W = ~'(I/~2nh)E(a h) 

2 
- E(I/~2)(L/N~ S h (3.I0) 

where v = the number of strata represented in 
the sample, 

2 = y(~ h _ L~a)/(L _ I), S B 

and E(ah)= I- (N((L - I)/L))/(N) 
n n . 

4. THE EFFICIENCY OF R. In order to reduce 
the variance of the estimator of Y stratified 
sampling is employed in practice with different 
allocation schemes of the sample. In particular 
when the population strata means differ consid- 
erably from each other and the patterns of strata 
variances S~ differ for different content items, 
the scheme ~iof proportional allocation is used to 
eliminate this variability. But, if stratified 
sampling is not possible because of (b), then it 
is of interest to find an estimator of Y based on 
post-stratification which would minimize the be- 
tween strata variation and at the same time would 
not increase the within strata variation "unduly". 

A reasonable class of unbiased estimators of 
Y based on post-stratification that can be com- 
puted from the sample is given by 
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Y g (n h) Ph~h/E (g (n h) ) (4. I ) 

where g(n h) is any mathematical function defined 
for all values of n h and is such that g(O) ~ O 

and E(g(nh)) # O. This class clearly includes 

the sample mean y by letting g(n h) = n h. All es- 

timators of (4.1) with the exception of y suffer 
from the same drawback as y defined by (2.1), 
that is, the increase in variance through trans- 
lation. Hence the logical step to eliminate this 
effect is to consider ratio estimators analogous 
to (2.7). 

It is shown in Appendix II that the ratio es- 
timators obtained from (4.1) are unbiased and our 
estimator ~ given by (2.6) minimizes the between 
strata component of variance in this generalized 
class of estimators (4.1) when all strata sizes 
are equal. In the case where all strata sizes 
are not equal, there exists no ratio estimator 
that minimizes the between strata component of 
variance if g(n h) is required not to depend on 

the population strata means or strata variances. 

The between strata component of variance of R, 
V(R)B, is always smaller than that of y and (as 

is seen in Appendix I) V(R) B is of an exponential 

2 n (PhQh n+l order of magnitude O(PhQ h) or O ) and ap- 

proaches zero much more rapidly than V(~) B which 

is of the order O(n i). 

When the number of strata L is large, all P 
h 

are small, and n is moderately large, it is seen 
in Appendix I that an approximate V(R) B is of 

order O(nL -2 ) or O(n2L-3). This implies that in a 
situation where the usual estimator (I.I) is at 
its worst, R has a negligible between strata 
component of variance. 

Turning now our attention to the within strata 
component of variance we consider an approxima o 
tion to V(R) W since the exact variance is analyt- 

ically intractable. In Appendix I we show that 
-I 

to terms of order O(n ) we have that 

2 2 n 
V(R)w =Y Ph °h/n(l - Qh ) 

n 
+ Y QN °2h/n2 (I - Qh ) (4.2) 

which clearly approaches the variance of the es- 
timator used in stratification with proportional 
allocation for large n, i.e. 

V(~)W " Y(Ph°2h/n)" (4.3) 

The asymptotic result (4.3) is also correct for 
large L if all Ph are small and n is moderately 
large. 

The relative efficiency of R as compared with 
the estimator of ~ employed in stratified sam- 
pling with proportional allocation approaches 
asymptotically 1 if either n is large or L is 
large (so that all Ph are small) while n is 
moderately large. 

5. THE ESTIMATION OF THE VARIANCE OF R. An 

unbiased estimator of V(R) is given by 

L E(bh,)E(b h) - E(bh,b h) 

v(R) = Y ahah, 2E (ahah,) 

h '#h=l 

thh, 

(5.1) 
L L 

2 2 2 
+ Y b~dhS h - E= b /N h 

h=l h 1 hsh 

where thh , is an unbiased estimator of (Yh - Yh '~ 

given n h # 0 and nh, # O. We may use the estima- 

tor 
~( _ -- _ 2 ,/nh ) thh' = ahah' Yh Yh' )2 (s h 

] 
n h 

2 i~ (Yhi - Yh )/(nh - I) (5.3) when we define s h = I 

and Sh,2 by replacing h by h I in (5.3). Finally 

in (5.1) we define d by 
h 

= JO if n h = O 

d h 

L I/n h if n h I. (5.4) 

The computation of ~Yh - ~h ')2 - (s~/nh) - 

(s h2,/nh,)~ in (5.2) is only required if both 

nh> I_ and nh, _ > I since otherwise ahah, = O. 

2 2 in (5 I) However, the definitions of s h and Sh, 

and (5.3) require that both n h >_ 2 and n h,_> 2. 

= = In case n h i and/or nh, I methods of estima- 

ting variances from single units per stratum 
have to be employed (see e.g. Hartley, Rao, and 
Kiefer (1969)). 

If the number of strata is not small, then 
it becomes very tedious to compute E(bh)E(bh,) - 

E(bh,b h) in which case an approximation can be 

found. 

6. POST-STRATIFICATION FOR MORE GENERAL SUR- 
VEY DESIGNS. We confine ourselves here to abrief 
outline of the main general theory of post-strat- 
ification for stratified multi-stage designs. We 
shall utilize the theory of "Domain Estimation" 
(see e.g. Hartley (1959)) by identifying post- 
strata with "domains of study". 

Denote by Yi the characteristic attached to 

the i th last stage unit and by Y(yi ) the stan- 

dard unbiased estimator of the population total 
of the Yi in the sample. Define now the domain 

variables 
=fYi if unit i is in domain h 

hYi \ 
0 if unit i is not in domain h 

and 

(6.1) 

hXi =~ I if unit i is in domain h 

L O if unit I is not in domain h 
and consider the subset of samples for which at 
least one last stage unit falls into domain h. 
Denote by 

(6.2) 
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~h = Pr~at least one last stage unit in domain 9" 
(6. ~) 

A 

For this subset of samples the estimate Y(hXi ) 

of the number of units in domain h will be 
A 

greater than zero since Y(hXi ) is a linear func- 

tion of the hXi with positive coefficients. Ac- 

cordingly, we can for this subset of samples com- 
pute the ratio estimate of the population domain 
mean in the form 

A 

Y(hYi ) A 

(6.4) 
hY ~(hXi) 

which will have a "technical bias" given by 

BiashY = -COV(hY,Y(hX i)) (~h/h M) (6.5) 

when Coy is a conditional covariance applicable 
to the above subset of samples and h M is the to- 

tal number of last stage units in domain h. It 

is reasonable to assume that Coy (hy , Y(hXi )) 

will be zero or small since the estimate of the 
mean value of the y characteristis (hy) is 

unlikely to be correlated with the estimate of 
the number of units Y(hXi ) falling intodomain h. 

We finally turn to the post-stratified esti- 
mates of the population mean and define in anal- 
ogy to (2.2) the post-stratified estimates 

= Y ahP h(~h/~h), x = ZahP h(I/~ h) (6.6) 

Ii if at least One last stage u n i t i s  in domain h 

where a h (6.7) 
if there is not at least one last 
stage unit in domain h. 

Finally we define the double ratio estimator 

= }/x ( 6 . 8 )  
which is our post-stratified estimator of the 
population mean. 

The main difficulty about using (6.6) and 
(6.8) is the computation of the ~h defined by 

(6.3) which would require the knowledge of the 
domain sizes in each last but one stage unit. 
However for many survey designs it is possible 
to compute approximations to the ~h as we shall 

illustrate below: 

Assume that the last stage units are sampled 
with equal probability and without replacement 
and use the index j to denote the last but one 
stage units. Denote by p(s) the probability 
that a sample s of last but one stage units has 
been drawn by the specified survey design. De- 
note by m. the specified number of last stage 

J th 
units to be drawn from the j last but one stage 

unit if in s. Denote by Phj the proportion of 

th 
last stage units in the j last but one stage 
unit which are in domain h and by Qhj = I - Phi" 

Then (ignoring fpc's) the probability ~h is 
given by 

= mj " 

~h I - Yp(s) . .~ Qhj I - Qh (6.9) 
s 3 ~n s 

where Qh is an average value of the Qhj and m is 

an average value of the total overall last stage 
sample size. 

Improvements in the computation of the~h and 

the spelling out of the bias and variance of R 
will be left to subsequent communications. 

APPENDIX I 

The space limitation prevents us from giving 
details of derivation of the results here; how- 
ever, they may be obtained from the first author. 

I. The order of magnitude of the bias and 
V(R) B as n÷ oo . Assuming that the strata sizes 

are sufficiently large for approximating the hy- 
pergeometric distribution of n h by a binomial and 
defining 

e h = ~a h - E(ah)~ /E(ah) , e = YPkek , (A.I) 

we can show that 
m n m n 

E(eh)=E(e)=O, E(e h) ~ O(Qh) , E(e m) ~ O(PhQk). 

(A.2) 
Suppos ing  t h a t l e ]  < 1, we a re  ab l e  to  expand 

b h d e f i n e d  in (3 .3 )  -1 
bh = Ph (I + e h) (i + e) 

_- Ph~l + (eh-e) + (e 2 _ ehe ) 

2 3 -I 
- e ) + ... (A.3) + (ehe _j. 

The bias in R is then shown to be 

- - 2 n O " n+l 
E(EbhYh) - Y ~ O(PhQ h) or (PNQ h ), (A.4) 

~ ~ 2 n n+l 
and V(R) B O(Phq h) or O(PhQ h ). (A.5) 

We can also obtain a first approximation to V(R)B 

to order O 2 n , n+l (PhQh) or O(PhQ h ), which is not pre- 
sented here. 

2. The order of magnitude of the bias~ V(R) B 

and V(R)w when L÷ oo, Ph ÷ O and n is moderately 

large. Since it is not difficult to prove that 
the bias and V(R) B are of the same order as be- 

(R) R) w fore, we shall concentrate on V B and V( . 

Without going into detail we can obtain a first 
approximation . . . . . .  

V(R) = V(y/x) = V(y - Y x). (A.6) 

We consider cases where L is large, all Ph are 

small while n is moderate. Omitting all the terms 
in Ph with higher degree than 2 in the expansion 

of (A.6) and the finite population correction, we 
can show after much simplification that 

V(R) ~ O(n L -2) or O(n 2 L-B), (A.7) 
B 

and 2 
~ . L Ph ~ - I 

V(R)w ~ n h + O( L ). (A.8) 
h=l 

3. The order of magnitude of V(R) W as n ÷ 
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For large n it has been shown by Stephan (1945) 
-2 

that to terms of order n 

Qh I " I + (A 9) 
E' (~h) nPh n2p " 

h 
2 

2 1 Qh ~ h Ph ° h + =-~ y . (A I0) 
"--)W " n ~ n " 

Then V 

n (I -Qh ) n I-Qh 

APPENDIX II 

An optimum property of R for a population with 
equal strata sizes. We shall establish that when 
all strata sizes are equal R is unbiased and mini- 
mizes uniformly the between strata component vari- 
ance of a generalized class of unbiased ratio es- 
timators 

~ Z{ g (nh)PhYh/E (g (nh)) } 
R = (A. II) 
g E { g (nh) Ph/E (g (n h) ) } 

where g(n h) is a function with g(O) = O. First 

of all these ratio estimators reduce to 

Z g (nh) ~h 
= (A.12) 

g Xg(n h) 

since all Ph are equal. Moreover, the random 

variables 

g (n k) 
, k=l .... L, (A. 13) 

Ck = X g(n h) 

have the same expectations, variances and co- 
variances. Since 

Y g (n h) g (n k) 
I = Xg(nh) = Y y g(nh) = X c k (A.14) 

by taking the expectation and variance of this 
relation we arrive at 
E(Ck) = I/L , CoV(Ck,Ck,) = -V(Ck)/(L -I). (A.I5) 

It follows that 

E(Rg) = E (E(XChYh)) = E (X chY h) = X Yh/L = Y 
i 2 I (A. 16) 

which implies that R is unbiased. The between 
g 

strata variance component can be treated in ex- 
actly the same way as V(R) 

B ' 
we write 

Cov(c h,c h,) - - 2 

V(Rg)B = - h~h' 2 (Yh-YN ' ) 

V(Ck ) X (yh_Yh,) 2 (A.17) 

(L-l) 2 
which, after some simplification, 

2 (A 18) = V(c k) e S B 

where X -2 ~2 
YN - (L-I) 

2 " (A 19) 
SB = (L -I) 

Since 
2 ( Ck 2 2 V(c k) = E(Ck)- E( )) = E(c k) - I/e 2, (A.20) 

we concentrate on minimizing 
2 

2 iF E 2 (ECh) 
E(Ck) = ~ (Ch) = E ~,, 

2 (A.21) 

E{ g (nh)} =! z( 2 ) P(n I ..... n L) 
L { E g (n h) } 

where the first summation extends over all pos- 

sible values of n I ..... n L and P(n I ..... n L) 

is the probability of getting (n I ..... nL) in a 

sample of size n. For any particular value 
' ) with~ positive n h values we (n ..... n L 

can see, by Cauchy-Schwartz inequality, 

2 
X~ (n~) } 

> I (A. 22) 
2 -- - 

{Yg (n~) 

and equality is attained when g(n~) = arbitrary 

nonzero constant. Without loss of generality we 
assume g(n h) = 1 for all nh~ O which minimize 

2 ~ 
E(Ck), i.e. R minimizes the between stratum 

component of variance. In fact 

( I) 2 (A 23) V(R)B = E(I) - ~ SB 
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