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INTRODUCTION 

Many existing and proposed governmental grant- 
in-aid programs distribute funds annually to 
each state in accordance with a specific 
formula or allocation rule that takes into 
account some presumed measure of "need", as 
well as of population and, in some cases, of 
other local factors. Some federal assistance 
programs and their formula practices are re- 
viewed in Statistical Policy Working Paper i 
(U.S. Department of Commerce 1978). For the 
purposes of our present analysis we assume 
the existence of a national program to aid the 
states in their conduct of some specified 

social service activity. We assume that it 
is an open-ended entitlement program providing 
an annual grant to each state of, say, one 
dollar per low-income resident. We assume 
that three types of administrative costs are 
incurred: fixed program overhead costs, recur- 
ring data collection costs, and imputed costs 
of misallocation of grant funds. 

In this paper we consider the first-stage 
problem facing a statistical program admini- 
strator who seeks optimal policies for select- 
ing the timing and size of data collections to 
update a single measure (such as percentage 
in poverty) at the national level, assuming 
for now that very precise annual estimates of 

population are provided without cost to the 
program. We plan to treat the second-stage 
problem of optimal policies for updating sub- 
national estimates by state or by groups of 
states in a separate paper. Also to be 
treated elsewhere is the problem presented by 
multi-item measures (e.g., poverty, unemploy- 
ment, and housing overcrowding) jointly in a 

single allocation formula. 

THE TIMING AND SAMPLE SIZE PROBLEM 

Specifically, we propose to solve the following 
operational decision problem in survey practice 
by solving a related optimization problem in 
inventory control theory: Given (i) that there 
is a cost for collecting and processing data, 
(ii) that a cost over time can be imputed to 
the lack of knowledge of the true value of a 
socioeconomic parameter used in an allocation 

formula, and (iii) that the decay in data pre- 
cision over time can be quantified, determine 
when to collect new data and how much new data 

to collect in order to minimize the sum of 
costs of collection and of lack of knowledge. 

In our development below we do we do not start 
with some predetermined precision or desired 
coefficient of variation for the parameter 
estimate to be obtained from each data collec- 
tion. Rather, we derive optimal pairs (t °,n ° ) 

for elapsed time since the last previous data 
collection and for data base size in accordance 
with a loss function which combines data collec- 
tion costs and lackof-knowledge costs, with the 
latter based on an appropriate measure of the 
dollars misallocated each year owing to lack of 
perfect knowledge of the allocation parameter 
value. 

Determination of sample size as a statistical 
decision problem is reviewed briefly by Coch- 
ran (1977; section 4.10). Most previous work 
in this area considers the economic choice of 
sample size, but not the timing of recurring 
collections, for estimating a parameter with a 

fixed but unknown or vaguely known mean value. 
We consider here the problem of jointly determ- 
ining timing and sample size when the goal is 

to estimate a parameter that is assumed to 
follow approximately a general one-dimensional 
random walk in discrete time with no adherence 

to a fixed mean value. 

MEASUREMENTS AND ESTIMATES FOR 

A NONSTATIONARY PARAMETER 

Consider a random variable X with stochastic 

parameter P having a value Pt at time t . 
For example, X might be a binary random vari- 
able taking the value i for a person below the 
poverty line and 0 otherwise, subject to a 

binomial parameter Pt constrained to the 
range 0 < Pt < i. An underlying model for Pt 
might be represented by a linear first-order 
stochastic difference equation, 

Pt = Pt-i + ut (t = 1,2,...), (I) 

uL are normal independent (0,~ro2) where the 

random variables, with P0 known or precisely 

estimated, 0 ~ P0 ~ 1 , and E[~ut~] ~< P0 
(with, for example, PO -~ 0.1), so that for 
periods involving only a few time steps (e.g., 
a few years in the case of poverty, which is 
defined in terms of a calendar year accounting 
period) there is essentially zero chance of P t 
wandering to zero or one. 

Efforts to measure Pt are assumed to yield 

~t = Pt + w t , (2) 

,#k 
where Pt is a survey estimate based on a 
simple random sample of size n t and w t is 
a measurement error term depending on sample 

size n t , possibly on the true value Pt of 
the parameter, and on various interfering 
factors. A realistic model for survey data on 
U.S. poverty over the past decade would speci- 
fically recognize measurement bias and year-to- 

year correlations of the w t , but a simplified 
model with the w t treated as if they were 
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independent zero-mean constant-variance random 
variables suffices to demonstrate our approach. 

For relatively large sample sizes, with 

E[Pt] = Pt-I in a general random walk frame- 
work, we claim that old data, properly dis- 

counted for loss of precision, is "equivalent" 
to new data. We may thus use old data and new 

data together to form an estimate Pt' of Pt, 

, A , 

Pt = at Pt + (1-at) Pt-1 ' (3) 

0 ~ a t ~ i, where at is a function of time 
and of sample sizes and is determined by a 

method described below. We use a caret to 

denote a measurement at time t on a single 

data set collected at time t and a prime to 
denote an estimate constructed at time t from 

two or more data sets collected at different 

times. One may observe that (3) is analogous 

to exponential smoothing when a t is constant. 

COST FUNCTIONS 

We assume that the cost of collecting and proc- 

essing new data with sample size n is of the 
form 

C(n) = c o + c n , if n > 0 , 

= 0 , if n = 0 , 

(4) 

where c is a fixed cost we incur each time 

we undertake a new data collection and c is 

the unit cost of each observation. 

It should be noted that we may include in c 
o 

indirect administrative burden as well as 

operational start-up cost and include in c 

not only the direct cost of each interview but 

also an imputed cost of burden on respondents. 

We define lack-of-knowledge cost per unit time 

as the loss which arises because at time t , 

t ~ r , we possess only the information from 

a sample of size n r , collected and instantan- 

eously processed at time r . We ascribe a 
dollar loss to our lack of knowledge since it 

causes us to misallocate grant-in-aid funds. 

This cost may be represented formally by a loss 

' Pt ) , where the function, namely L(t-r,nr,P r , 
first argument is the time elapsed since the 

data were collected, the second argument is the 
size of the simple random sample that was taken, 

the third argument is our estimate of the para- 

meter at time r , and the fourth argument is 
the unknown value of the parameter at time t . 

We have assumed that Pr is slowly varying, in 

the sense that it is likely to remain within a 

few percentage points of its current level for 

several years. For the purposes of our present 

analysis, we interpret L as conditional on the 

most recent Pr estimate, suppressing explicit 

dependence on Pr' or Pt ' writing L(t-r,n r) . 

DECAY AND EQUIVALENT SAMPLE SIZE 

We characterize a sample of size n r taken at 

time r as equivalent to a sample of size n t' 

taken at time t , with n t' given implicitly 
by 

L(t-t,nt') = L(0,nt') = e(t-r,n r) . (5) 

We will call n t' the equivalent sample size 
corresponding to an n r decayed to time t , 

since by time t a sample of size n r taken 
at time r yields the same lack-of-knowledge 

cost as would data with sample size n t' taken 
at time t . Furthermore, if at time r the 

equivalent sample size for all the knowledge 

we still possess from acquisitions up to and 

' then we may treat including time r is n r , 

n r' as if it were the n r in (5) and write 

' ' R(t-r ') , (6) nt = nr 'nr 

where R is a retention function representing 

the fraction remaining at time t of the equi- 

valent sample size n r' that existed at time r. 

The amount retained is n r' R(t-r,n_') while 
the amount decayed is thus n r'[l-R~t-r,n r')]. 

We will refer to this latter quantity as the 

demand or depletion due to decay over an inter- 

val of length t-r . The functional form of the 

retention function R depends on the lack-of- 

knowledge cost function L , since from (5) 

and (6) the key requirements that R must 

satisfy are 

and 

L(t-r,nr) = L(t-S,nrR(s-r,nr)) (7a) 

R(t-r,nr) = R(s-r,nr)R(t-S,nrR(s-r,nr )) (7b) 

for all s such that r ~ s ~ t . 

We select as a representative cost function 

the lack-of-knowledge cost function 

n(t-r,n r) = AI[ A/n r + (t-r)B ]BI , (8) 

where A, AI, B, and B 1 are positive constants. 
A 1 is a scale factor transforming the second 

factor, which is a measure of current data 
quality, into a dollar loss. The magnitude of 

A 1 will depend on the value of the information 

in the data base in the sense of the serious- 

ness of resulting allocation errors. A 1 will be 

expressed in different units for different B I. 

A and B are weights assigned to the size- 

dependent and time-dependent components, res- 

pectively, of the loss function; for example, 

A/n r may be proportional to the variance of 
the parameter estimate based on a sample of 

size n r and (t-r)B may be proportional to 
the variance of a random walk of duration t-r. 

In that case, if B 1 = 1 , then L is propor- 

tional to the sum of the two variance compon- 

ents and is a quadratic loss function. If 
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B 1 = 0.5 , then L is proportional to the 

corresponding standard error of Pt'" 

The explicit R corresponding to the L 

function of (8) is 

R(t-r,n r) = [ i + (nr/A)(t-r)B ]-i , (9) 

which for fixed n r and discrete t has a 
decay pattern over time as shown in Figure A. 

We restrict R by the relation R'n r ~ 1 , 
thus implicitly bounding t and hence L . 

We then have directly what we may regard as an 
updated Bayesian estimate of the parameter P t ' 

! ~-  ! ! ! ! ! 

Pt (nt/nt) ~t + (nr R(t-r'nr)/nt)Pr ' (i0) 

where n t' is the sum of the new sample size 

and the decayed equivalent of the old sample 
size. Pt' is thus an ^ average of the old Pr' 
estimate and the new Pt measurement weighted 

by their respective equivalent sample sizes at 
time t . For a discussion of Bayesian estim- 
ation techniques see DeGroot (1970) or Zellner 

(1971). 

APPLICABLE INVENTORY CONTROL PRINCIPLES 

A process evolving through time may be treated 
as an inventory system if (i) there is a stock 

of items (e.g., equivalent sample size) which 

is depleted over time by demand for items, per- 

The downward segments in the graph of Figure A 
represent decline in the stock level, which we 
interpret as demand corresponding to data de- 
cay. Demand (or decay) is assumed to occur 
according to a power law pattern such that the 
rate of decay is a nonincreasing function of 

time; cf. (9). Replenishments made every t 

units of time (called the scheduling-period) 

for the amount q (called the lot size) are 
represented by the upward segments of the graph. 

Another way of interpreting what is happening 
is that whenever the inventory level falls to s 
or below (called the reorder-point), the de- 

cisionmaker orders the amount q which arrives 
instantly. A third interpretation is that when- 
ever the amount of inventory falls to level s , 

or below, a sufficient quantity is ordered so 
that the inventory level rises to the amount S 
(called the order-level). 

This last interpretation is the most robust in 
the sense that such (s,S) policies are optimal 

under a wide variety of circumstances. For the 
deterministic demand rate treated in this paper 

the three types of ordering policies described 
above are equivalent. The cost function K , 
the expected cost of inventory that may be 
carried or short during this period, is usually 

a convex function of y , the number of items 
on hand at the beginning of the period (after 
replenishments, if any, have arrived). 

As in equation (4), replenishment costs are 

ishability, evaporation, decay, etc., (ii) there usually taken to be of the form: 

exists the possibility of ordering additional 

items (e.g., a new survey) to increase the 
inventory level, and (iii) costs are incurred 

based on the amount of inventory in stock or 
short (e.g., our lack-of-knowledge cost) and 
on each order placed to replenish inventory. 

For further elaboration of the inventory con- 
trol principles set forth in this section see, 
e.g., Hillier and Lieberman (1974) or Naddor 

(1966). 

C(q) = c o + cq , if q >0 , 

= 0 , if q = 0 , 

where a fixed charge c o is incurred if an 
order is placed and a cost of c monetary 
units per unit ordered is also incurred. 

Thus if we are ordering, in order to optimize, 

f 
Amount 

in 

Stock 

~ ....... order level ...... ....... 

l \ " ~  " ~  _ , 

q = l o t  s i z e  ~ ~ ~ . .  . . . . . . . . . . . . .  

l -J s . . . . . . . .  reorder point ....... ".-~ 

0 : i 2 3 4 

T ime 

t = scheduling period ........... -~-: 

Figure A. Graph of the Behavior of a Simple Deterministic Inventory 

System with a Power Demand Pattern and No Backordering 
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we need only find the value of y that minimizes 
cy + K(y) . Call this value S and consider 

Figure B. We can see from Figure B that if 
x > S , then 

c o + cy + K(y) > cx + K(x) (11) 

for all y > x . For all x > s subtracting 
cx from both sides of (ii), we have 

c o + c(y-x) + K(y) > K(x) (12) 

so we should not order. However, for x ~ s , 

the inequality (12) is reversed, that is, 

c o + c(S-x) + K(S) ~ K(x) (13) 

and it is less expensive to place an order for 

the amount S-x than to take any other action. 

Treating y as a continuous variable and K(y) 
as a differentiable function, the optimum S is 

the solution to 

dK(y) + c = 0 . (14) 
dy 

Furthermore, the optimum s is the smallest 

value (actually unique since the function is 

convex) that satisfies the expression 

cs + K(s) = c o + cS + K(S). (15) 

We now introduce leadtime. Suppose S were 

the optimal order-level when leadtime is 0; 

i.e., for instantaneous delivery of an order. 

If the leadtime is actually v , then the 

optimal order-level S* is S + D(v) where 

D(v) is demand over an interval v . Thus, if 
orders were placed every t units of time, 

starting at time 0, then ordering up to S* 

will cause the inventory level to be at S at 

times v , t + v , t + 2v , etc. This policy 

minimizes costs over time intervals of length 

t , namely [v + kt, v + (k+l)t), k = 0,1,2,.... 
Actions by the decisionmaker cannot affect what 

happens in the time interval [0,v) , so we 

do not consider this interval in the optimi- 

zation problem. The effect of leadtime on the 

cost function to be minimized is shown in the 

next section. 

cy + K(y) 

: ~ 

s S 

Figure B. Graph of cy + K(y) 

OPTIMAL SOLUTION TO THE TIMING 
AND SAMPLE SIZE PROBLEM 

We now make use of the similarity in structure 
between our statistical policy problem and the 

inventory control problem of the previous sec- 
tion. First, suppose we have a single-period 

problem of determining the timing and sample 

size of one data collection. Assume that the 

equivalent sample size at the beginning of the 
period is n' , then for a period of length 

one time unit the cost, with no ordering, is 

C(n') = L(l,n') . (16) 

However, if we do order a sample of lot size 
q = n°-n ' , assuming instantaneous delivery, 

the expected cost during the time period is 

C(n') = Co+ c(n°-n ') + L(l,n °) , (17) 

if cost is incurred only at the end of the 
unit period. If we treat the cost over time as 

accruing continuously (with lack of knowledge 

costing us more at the end of the period than 
it does at the beginning) then the cost during 

a unit period is 

~01  C(n') = L(r, n') dr . (18) 

It can be shown that 

7 r  t I t _ r ( n  ) = ( t - r )  -1 L ( s , n )  ds (19)  

i s  convex  in  n f o r  any t s i n c e  L ( s , n )  i s  
convex  in  n f o r  e v e r y  s , s ~ r  ~ O. 

For simplicity, in the remainder of this sec- 

tion, we let r = 0. The pair of cost equa- 
tions (16) and (17) also provide an analog to 

the inventory problem, with It(n) substituting 
for K(n) , when t = I. Because the decay 

function (e.g., equation (9)) is deterministic 

in t (and n ), our problem may be solved by 

finding the optimal scheduling-period t ° (the 

the time interval between reorders) rather 

than a reorderpoint s. That is, for any given 
time interval t between reorders, we can find 

an optimal order-level S = n ° . 

Since demand (i.e., decay) is deterministic, 

finding an optimal s and finding an optimal 

t are equivalent, and it is easier to find the 

optimal t and then infer the optimal s . 
Technically, we are finding the optimal solu- 

tion for a scheduling-period order-level (t,S) 
policy rather than a reorder-point order-level 

(s,S) policy. 

For continuously accruing cost, the minimiza- 

tion problem is 

Min (i/t) [It(n°(t)) + c o 
t 

+ cn°(t) [l-R(t,n°(t) ) ] ] (20) 
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in order to get the least average cost per unit 
time, where n°(t) is the optimal order-level 
for time t, found from equations (16) and (17) 
using the theory of the previous section and 
n°(t)[l-R(t,n°(t))] is demand due to decay of 
equivalent sample size during a time interval 
of length t . Although we may treat time as 
continuous with regard to cost, we will only 
consider integer values of t in the optimi- 
zation expression (20), since, as a practical 
matter, the time interval between surveys is 
an integral number of months or years. 

In order to take leadtime into account, we must 
determine an appropriate v to reflect the 
typical time delay between the collection of 

new data and its availability for use. We then 
replace n ° with n where 

n°(t) = n*(t,v) R(v,n (t,v)) , (21) 

and n*(t,v) is the optimal order-level for a 
given scheduling period t when leadtime is v. 
Thus, expression (20) becomes 

Mint (i/t) [It(n*(t,v) + c o + 

cn*(t,v) [1-R(v,n*(t,v) ) ]] . (22) 

In the discrete case, the analog to equation 
(20) is 

t 
Min(i/t) [ ~ L(r,n* (t,v)R(r,n* (t,v))) 
t r=l 

+ c I + cn*(t,v)[l-R(t,n*(t,v))]] . (23) 

NUMERICAL EXAMPLES 

We now give some examples of a specific solu- 
tion to the timing and sample size problem 
using (20) as the objective function. We pre- 
sume that K is unimodal in t when optimal 

order-levels are used for each t . We thus find 
the optimal pair (t°,n°(t°)) for the scheduling- 
period and the order-level by this procedure. 
Our procedure is to find the optimal order-level 
n ° = S and the associated total cost K(t,n°(t)) 
when t = i, and then do the same for t = 2,3,... 
until K(t,n°(t)) starts increasing. Henceforth 
we will write n ° for n°(t ° ) . The sample size 
each time a survey is commissioned is therefore 
n°[i-R(t,n °)], except that the first survey will 
need to have sample size n ° , if we start with 
nothing, or be large enough so that the initial 
equivalent sample size (possibly using old data) 
is n ° . 

Table 1 contains solutions for cost function 
(8) with the following values for constants: 

A 1 = I, B 1 = 0.5, c = $60/ca~e and Co= $300,000. 
A has values of 2.56 x 101 ~ and 2.56 x i017, 

which correspond to dollar benefits per person 
of $i and $I0. The lack-of-knowledge cost is 
the expected misallocated dollar amount, which 
is the dollar amount per person times the mean 
absolute error (where the latter is 0.8 times 
the standard deviation) of the number of persons 
in poverty. The v~riance of t~e decay per year 
ranges from ixl0 J to 9x10- , which roughly 
corresponds to existing national poverty data. 
The constant B , which in conjunction with A 
determines the decay rate, is found by setting 
0.1B/A equal to the random walk variance. 

Good estimates for the decay rate would depend 
on observations of temporal changes in the 
parameter being measured, perhaps based on 
time series analysis of past data. See, for 
example, Scott and Smith (1974), who considered 
stochastic population parameters, although not 
in relation to the timing and sample size de- 
cision problem. We do not treat rate estimation 
here, but give examples utilizing a range of 
decay rates with selected values of the other 
constants in each cost function. 

Table I. Optimal Order-Levels and Sample Sizes for Various Values 
of Grant Funds Allocated and Decay Rates Assumed. (Ordering cost 
is $60 per unit plus a fixed charge of $300,000. Inconsistencies 
in the table are due to roundoff errors in the computer program.) 

Entitlement 
per Person 
in Poverty ($) 

t ° S Annual 
Variance Opt imal Opt imal Opt imal Lack-of Total 
of Random Scheduling- Order- Sample Knowledge Annual 

Walk Period Level Size Cost ($) Cost ($) 

i0 
i0 
I0 
i0 
i0 

Ixl0 -5 4 8104 
3X10 -5 2 5160 
5X10 -5 2 4691 
7X10 -5 2 4405 
9X10 -5 2 4200 

ixl0 -5 1 22,315 
3X10 -5 1 18,136 
5X10 -5 1 16,466 
7X10 -5 1 15,423 
9X10 -5 1 14,671 

6193 558,851 726,751 
3900 691,025 958,032 
3867 825,211 1,091,212 
3790 936,746 1,200,457 
3709 1,034,509 1,295,889 

15,410 4,866,246 6,090,818 
15,320 7,064,615 8,283,827 
14,683 8,638,299 9,819,255 
14,116 9,941,021 11,087,953 
13,638 11,079,457 12,197,743 
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Total : ~ ~ o  
Annual 
Cost 

S~ 2 , ~  
1 2 3 4 5 6 

Total : 
Annual : ~N,~~ 
Cost 

1 2 3 4 5 6 7 8 9 

(i) Cost as function of scheduling-period 
t for selected values of S 

(ii) Cost as function of order-level S 
(thousands) for selected values of t 

Figure C. Typical Graphs of Total Annual Cost 

The table shows the optimal scheduling-period 
t ° the corresponding optimal order-level S, 
the sample size (lot size) S-n needed to 
maintain that order-level, and the correspond- 
ing lack-of-knowledge cost and total cost per 
year of following that policy. 

Figure C depicts the typical variation of total 
cost per year in relation to elapsed time t 
between surveys and to the order-level S for 
selected values of the constants. One can see 
from the shape of the curves that ordering too 
frequently is relatively more expensive than 
ordering too infrequently. It can also be 
seen that each curve is fairly shallow around 
its minimum. Therefore, the additional cost 
of being near but not precisely at the optimal 
scheduling-period t ° may not be excessive. 

CONCLUDING REMARKS 

By the above application of elementary optimi- 
zation methods to a simplified practical pro- 
blem of periodic data collection we have at- 
tempted to demonstrate the potential utility of 
inventory control and related decision techni- 
ques in assessing the tradeoffs between collec- 
tion costs and lack-of-knowledge costs. We have 
not explicitly considered stochastic decay in 
this paper, but instead have treated a multiple 
time unit deterministic case as a single-period 
model, possibly revising constant terms for 
each decision on survey timing and sample size. 

An extension in progress of the present results 
to cases of multi-item and multi-jurisdiction 
systems with associated loss functions relevant 
to specific allocation formulas should enhance 
the practical utility of our approach. Problems 
associated with a randomly-varying decay process 
and links with perishable inventory theory will 
be discussed in a separate study. 
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