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i. Introduction. The tremendous success that 
survey sampling methods have enjoyed for many 
years at the U.S. Census Bureau and elsewhere 
evidences the fact that survey sampling practice 
is a very highly developed field. ~owe~er, ~n a 
discussion on the foundations of the theory of 
statistical inference in finite populations, it 
is relevant to ask if that success derives from 
the application of classical survey sampling 
theory, or instead if it is largely due to a 
phenomenon similar to that studied by Relles and 
Rogers (1977) in their article, "Statisticians 
are Fairly Robust Estimators of Location." Many 
writers have questioned whether the formal prob- 
ability sampling theory of finite population 
inference adequately explains the wealth of good 
practice, or whether an "art" of survey sampling 
practice is required to bridge the gap between 
that theory and good practice. 

A central issue discussed at some length by 
the authors is the proper role of superpopulation 
probability models in finite population inference. 
They plainly reject the notion that models have 
no relevance to the theory. They accept the idea 
that it is often useful to represent the variate 
values in a finite population as realized values 
of random variables having some joint probability 
law. This model is said to be useful for evalu- 
ating the relative efficiences of various esti- 
mator and probability sampling plan combinations. 
However, they express strong reservations about 
the explicit use of the model in making the final 
inference (e.g. confidence interval) from the 
sample. Rather than basing the inference on the 
model, they prefer to make inferences which refer 
only to the probability sampling distribution 
actually used to select the sample units. 

According to my understanding, the main rea- 
sons for the authors' reluctance to use inference 
statements which refer to a model are the follow- 
ing: (a) The model may be wrong. This raises 
the worries that we all share about what happens 
when a model is naively "assumed" in order to 
endow an estimation procedure with good proper- 
ties (such as very narrow confidence intervals). 
(b) Mathematically "valid" inferences can be 
made without reference to any model. Thus, 
although an estimation procedure might be chosen 
because it has desirable properties under what is 
believed to be a realistic model, the final 
inference statement is supposed to be safe, even 
if the model is hopelessly wrong , because it makes 
no reference to the model. Instead, the "valid- 
ity" of the inference rests only on the probabil- 
ity sampling distribution, which is completely 
under the control of the sampler. 

In short, Hansen, Madow and Tepping maintain 
that "models have their place--and that place is 
in the closet, out of sight." 

My aim is to argue that it is time to bring 
models out of the closet. They should be used 
explicitly and consistently, but of course 

robustly. The particular model-based approach 
with which I am most familiar is the prediction 
approach in which the problem of making infer- 
ences about a population total is reduced to that 
of predicting the total for nonsample units. 

Regarding point (a) above, I wish to main- 
tain that reasonably careful applications of the 
(model-based) prediction approach will automat- 
ically avoid use of procedures which are sensi- 
tive to failure of the adopted working model. 
This idea is employed in section 2 where the 
Illustrative Example is duscussed. 

Point (b) has been strongly challenged by 
many writers during recent years. Examples which 
come readily to mind include Basu's (1971) Circus 
Example, Royall's (1975) example of the popula- 
tion consisting of "an ass, an axe, and a box of 
old horseshoes," and Lahiri's (1968) examples 
illustrating the logical tangles one can encounter 
in trying to describe uncertainty in the unique 
sample obtained by properties of the probability 
sample distribution. This challenge begins with 
the observation that the logical mechanism which 
makes possible inferences from a given sample to 
the population depends ultimately on the exis- 
tence of some connection between the sample and 
non-sample units. It follows that when this 
connection is lacking (as in Royall's example) 

or when the estimator used abuses this connection 
(as in Basu's example) the resulting inference is 
unsound--even though it is formally "valid" in 
terms of the probability sampling theory. In 
section 3, the "surprise outlier" problem men- 
tioned by Hansen, Madow and Tepping is discussed 
in this light. 

2. Comments on the Simulation Study. The il- 
lustrative Example illustrates the fact that 
estimation procedures which have good properties 
under one model can perform poorly when a differ- 
ent model holds. An important case in point is 
the fact that, for unbalanced samples, the un- 
weighted ratio estimator ("model i") can be 
seriously biased if the regression of y on x is 
not a straight line through the origin. Royall 
and Herson's (1973) result that this bias can be 
eliminated by the use of balanced samples is also 
confirmed in the Example. (Balanced sampling, 
which is not relevant to the "model 2" estimator, 
does not help it.) 

The fact that the "model i" and "model 2" 
estimators do not perform as well as the other 
three estimators studied is supposed to provide 
evidence of the weaknesses of a model based 
theory of survey sampling. As a first comment, I 
believe that one gains more insight into the 
problem by analyzing the five estimators with 
respect to the model actually used to generate 
the study population than one does by examining 
whether or not weights equal to the reciprocals 
of inclusion probabilities were used. Secondly, 
it should be emphasized that the "model i" and 
"model 2" estimators atudied are far from being 
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the only choices that the prediction approach has 
to offer for this problem. 

A simple alternative is the separate ratio 
estimator, 

YSR = X (Nh/N)~Yh/Xh, 

where y. and >~ are sample means, and ~ is the 
h h 

the population mean for stratum h. Thin esti- 
mator has been studied by Royall and Herson (1973- 
part II) under various polynomial regression mod- 
els in which the conditional y-variance is taken 
to be proportional to x. One property they ob- 
tain is that, if well-balanced samples are chosen 
in each stratum, YSR is somewhat more robust than 
the unweighted ratio estimator (y''') with simple 
(unstratified) balanced sampling when failure of 
the straight-line-through-the-origin model is 
contemplated. In addition, they show that YSR 
with stratified balanced samples can be more 
efficient than ~"' with simple balanced samples. 
Although the robustness of this relative efficien- 
cy result has not been carefully studied, the 
separate ratio estimator has enough appeal, from 
a prediction theory point of view, to merit con- 
sideration along with the five estimators con- 
sidered by the authors. 

When (as in the Example) the variables y and 
x are related by a model with ~(Y) = ~ + Bx and 
Var(Y) = ~2x3/2, it is easy to show that, for 
stratified balanced samples, the mean squared 
error of YSR is approximately 

~(Y--sR- V)2 = °2E(Nh/N)2(x3~)h/nh , 

where (x3/2)h is the sample mean of x3/2 in 
stratum h, and the approximation is due to ignor- 
ing finite population correction factors. A 
similar calculation for the wei_ghted ratio esti- 
mator yields, for a given sample, 

~(¥,,_ ¥)2 = ~2 (-~ _ x)2/x 2 
W 

+ a2(X/Xw)2E(Nh/N)2(x3/2)h/n h . 

Since the average value of (X/x)2 in stratified 
random sampling exceeds unity, ~hese calculations 
indicate that Y--SR would have compared favorably 
with the other estimators if it had been included. 

The simulation study also confirms that the 
model-based weighted least squares variance esti- 
mators exhibit persistent negative biases under 
the conditions of the study. This is consistent 
with the results for the Model 1 estimator report- 
ed in Royall and Eberhardt (1975) and Royall and 
Cumberland (1977). 

The variance estimator v H is mentioned in 
passing by the authors in connection with the 
weighted ratio estimator. This variance estimator 
was originally suggested from prediction theory, 
and studied empirically, for use with the simple 
ratio estimator. The available theoretical and 
empirical results indicate that v H would produce 

variance estimates consistently larger than those 
produced by the Model 1 variance estimator used in 
the study. 

3. Surprise Outliers. The authors present an 
interesting example in section 3.2 which I believe 
supports the view that basing inferences on the 
probability sampling distribution is not suffi- 
cient to guarantee sound inferences. For ease of 
discussion, I will rephrase the example slightly 
as follows. 

A large sample of blocks is selected with 
probabilities proportional to an available 
measure of size, z i (e.g., number of housing 
units on block i). After selection of the sample, 
it is discovered during the field work that the 
size measure used for block #i, Zl, was grossly 
in error. In fact, the correct size measure, Xl, 
is about 500 times as large as z I. The usual 
estimator of the y-mean is 

~z = (Z/n)EsYi/Z i , 

where Yi denotes a total over block i, s denotes 
the set sample blocks, and Z = ~ zi/N. When 
block #i belongs to the sample, s, the value of 
~z will be very large, apparently_ producing a 
serious overestimate of Y. Faced with a sample 
containing block #i, the sampler may therefore 
decide to reduce the weight applied to YI' perhaps 
by using 

Y--x =~X/n)XsYi/X i , 

where x i = z i for i # 1 and x I is the true size 
for block #i, (or some other value which the 
sampler finds appealing). I assume that the 
original measures of size were obtained and 
checked with sufficient care so that the sampler 
is confident that the difference between Z and 
the mean of the true size measures is small. 

Consider the properties of Yx and Yz with 
respect to the probability sampling distribution 
actually used, in which blocks are selected with 
inclusion probabilities proportional to the z i 
(ppz). First note that Yz is ppz-unbiased, 
consistent, and its variance can be unbiasedly 
estimated from the sample. On the other hand, 
Y--x is biased, but should have smaller mean 
squared error than 7z. The estimator ~x may not 
be consistent in the probability sampling sense, 
depending on the properties of the infinite se- 
quence of populations to which the present popu- 
lation is considered to belong. For example, if 
the proportion of units for which zi<< x. remains 

-- i 
bounded away from zero, Yx (under ppz sampling) 
has a bias which does not vanish as n,N-+=. In 
terms of formal probability sampling theory, it 
would appear that mathematically "valid" infer- 
ences can be made from ~z, but inferences based 
on Y--x are not theoretically justifiable. 

For the unique sample obtained, there are 
at least two aspects of the situation which are 
inadequately explained by probability sampling 
theory. First is the matter of bias. If block 
#I is selected into the sample, the estimate 
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produced by Yz is an unacceptable overestimate of 
Y- yet it is "unbiased." If one corrects the 
estimate to Y--x' he incurs a bias. Furthermore, 
since the ppz-bias in ~x does not depend on the 
sample obtained, its magnitude (and sign) is the 
same whether we use it to describe the bias in- 
curred in making a large negative adjustment from 
~z to Y--x (if block #i is in the sample) or a small 
positive adjustment (if block #i is not in the 
sample but the error in z I is discovered during 
field work). Of course the presumed improvement 
in the ppz mean squared error also has the same 
magnitude whether the actual difference between 
~z and Y--x is small or large for the sample 
obtained. 

As the authors remark, and as intuition sug- 
gests, the problem with the estimator ~ is ordi- 
narily much less serious if block #i do~s not 
happen to belong to the sample. However, it is 
hard to see how this idea comes from probability 
sampling theory. If the probability sampling dis- 
tribution is relevant to assessing after-sampling 
uncertainty in the estimate, then ~z should have 
the same logical status whether or not the sample 
happens to contain block #i. 

A second issue is the applicability of the 
normal approximation. The authors mention the 
difficulty that "when an outlier occurs in a 
sample the normal approximation ... may not be 
acceptable." While this statement almost reads 
as if the normal approximation should apply to the 
unique sample obtained, I will discuss it in 
terms of the probability sampling distribution. 
Suppose that, owing to a large-enough sample size, 
etc., the ppz-distribution of Yz is well approxi- 
mated by a normal distribution except for samples 
containing block #i. If the total probability 
of all samples containing block #i is small the 
disturbance to the sampling distribution, due to 
samples containing block #i, would not seriously 
affect the goodness of approximating normal 
probability calculations. Moreover, as z I be- 
comes smaller, the total probability of samples 
including block #i diminishes, and the normal 
approximation improves. Of course, if the sampler 
has the great misfortune of obtaining a sample 
containing block #i, the value of y becomes 

z 
more extreme as z I decreases and, for him, the 
difficulty apparently becomes worse. Clearly, 
something more than approximate normality of the 
probability sampling distribution is needed to 
make the final confidence statement sound. 

Peeking into the closet, I submit that the 
reason for the sampler's reluctance to use Yz when 
block #i is in the sample is that the value of the 
estimate (for this unique sample) is intolerably 
inconsistent with his understanding of the rela- 
tionships among the y and x values for sample and 
nonsample units. If Yi is roughly proportional 
to x i throughout the population, then an estimator 
based on the sample mean of Yi/Xi is appealing. 
If not (as where x I is replaced by z I) then that 
estimator loses its appeal. When block #i is in 
the sample, the practical value of Yz as an esti- 
mate of Y is no___tt enhanced by the fact that ppz 
sampling was used to obtain the sample. It is 

hard to see how one can usefully "avoid ... the 
necessity of defending an assumed model" by an 
appeal to the assumption-free probability sampling 

theory of ~z" 

It seems clear that the kind of reasoning re- 
quired to produce a useful remedy for the problem 
that is encountered when block #i is in the sample 
uses implicit assumptions about the relationships 
among the y and x values for different blocks in 
the population. That is to say, some sort of 
vague, implicit model is forced out of the closet 
to rescue the sampler when a problem of this mag- 
nitude is encountered. 

If we make explicit use of a simple model for 
the situation, a straight-forward analysis of the 
problem may begin along the following lines. Con- 
sider representing each Yi as the realized value 
of a random variable Yi, which has conditional 
mean Bxi (given the "true" size measure I xi). Then, 
with respect to the model, the bias of Yz for a 
given sample is B[(~/n)Esxi/z ~ - X]. In agreement 
with intuition, the magnitude±and sign of this 
quantity depend strongly on whether x i = z. for 
blocks in the sample. Of course, under th~ same 
model, Yx is unbiased for any sample. If another, 
more complicated, model is thought to be more 
realistic, a different analysis can incorporate it. 
The utility of the approach lies in its ability to 
give formal, explicit expression to whatever in- 
sights are available into the structure of the 
population under study. 
4. Summary Remarks. It is agreed that the use 
of artificial randomization can be a useful tool 
in designing a sample (e.g. Royall, 1976), but it 
does not necessarily follow that randomization is 
sufficient to produce sound inferences--even if 
the sample size is "large enough," etc. While 
randomization can be expected to produce samples 
with good properties, that is, samples for which 
extraneous factors tend to be balanced out, the 
soundness of an inference based on a given sample 
ultimately depends on the characteristics of that 
sample. Inference from a "bad" sample is not 
logically strengthened by appealing to the charac- 
teristics of the randomized sample selection pro- 
cedure which produced it. 

Similarly, if, for the unique sample obtained, 
an estimation procedure is grossly inconsistent 
with the relationship which exists between sample 
and nonsample units (such as ~z if unit #I is in the 
sample), any randomization used in the selection 
of the sample has not helped to make the estimator 
robust. In this case, a serious failure of the 
implicit model has been encountered. Keeping the 
model in the closet is not the solution. 

The least squares prediction theory of finite 
population inference appears to be.a promising path 
to the development of robust estimators and sam- 
pling plans which have good properties under a wide 
range of conditions, and also to the characteriza- 
tion of the range of conditions under which a con- 
templated estimator/sampling-plan combination can 
be expected to produce good results. 
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D

William G. Cochran 

To me, when I was young, the model-based approach 
to estimation problems in sample surveys was the 
standard, natural one--that was what I learned 
at Cambridge. When I got to Rothamsted I used it 
in field and laboratory research in agriculture, 
in problems in which there were at most two or 
three measured response variables and in which it 
was relatively easy to collect extra data to 
check that the proposed model seemed to be cor- 
rect. However, when we began to consider surveys 
of farm practices that might have over 50 ques- 
tions, I saw the point of Yates' reliance on ran- 
domization and on results calculated over the 
sample space produced by his randomization method. 
Construction of over 50 models, some on variables 
with which I was not at all familiar, did not 
seem appealing. 

When the model is well-behaved, the simplicity of 
some of its exact small-sample consequences is 
attractive, and I use them when I feel confident 
of the model. I have at times wondered, however, 
if experts in operations with models might not 
contribute more in the area of observational 

studies. In this area, regression and ratio 
adjustments to remove initial biases have been 
found to be unreliable and vulnerable to attack. 
Short of abandoning observational studies, about 
the only positive method of attack on such prob- 
lems is to try to develop more realistic (and 
presumably more complex) models and work out 
their consequences when used in attempts to 
reduce bias. 

I agree with Dr. Godambe that lecture courses on 
sample surveys fail to attract. This has saddened 
me. I have been teaching sample surveys ever 
since I started teaching, and have always had the 
impression that in a Ph.D. program the sample sur- 
veys course was not popular, and somehow stuck out 
like a sore thumb. At times I have tried in lec- 
tures to relate sample survey randomization theory 
to the techniques taught in the mainstream courses. 
But if I did too much of this, I felt that I had 
stopped teaching sample surveys, and was just 
teaching another course in math. star. I agree 
that books like Dr. Sarndal's will help in bridg- 
ing this gap. 
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