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Probability sampling has come to be widely 
accepted as the standard approach in sample 
surveys. However, in recent years there has been a 
substantial amount of literature challenging the 
use of probability sampling and suggesting an 
alternative that conforms more nearly to the model 
approach often used in traditional statistical 
inference. These challenges have arisen in what 
has come to be referred to as discussions of 
foundations of survey sampling. 

A probability-sampling design consists of a 
sampling plan, or procedure for selecting the 
sample, and estimators such that (a) each member 
of the population has a known probability, greater 
than zero, of inclusion in the sample, and (b) the 
estimators from the survey are consistent in the 
sense that the estimator converges in probability 
to the population characteristic being estimated 
as both the sample and population sizes increase. 
For probability-sample designs, confidence inter- 
vals can be computed which, for samples large 
enough, will be valid in the sense that the 
probability that the confidence intervals contain 
the value being estimated is equal to or greater 
than the nominal confidence coefficients, indepen- 
dent of the distribution of the population from 
which the sample is drawn. 

A model-dependent design consists of a 
sampling plan and estimators for which either the 
plan or the estimators, or both, are chosen 
because they have desirable properties under an 
assumed model, and for which the validity of 
inferences about the population depends on the 
degree to which the population conforms to the 
assumed model. Applications of model-based 
approaches to survey sampling are often in the 
form of assumed superpopulation models in which 
the finite population under study is assumed to be 
a random realization of the assumed superpopu- 
lation. When such a model is assumed it may lead 
to consequences that substantially alter the 
approaches to design and inferences from sample 
surveys, as compared to probability sampling. 
When an approach is used that is sensitive to the 
validity of an assumed model, we refer to it as 
mode 1-dependent. Models are involved, also, 
explicitly or implicitly, in applications of 

probability sampling. However, since for large 
samples inferences do not depend on the validity 
of an assumed model, we distinguish probability 
sampling from model-dependent sampling. 

We compare the two approaches for a very 
simple illustration. Suppose we wish to survey a 
sample of a particular type of retail store at 
the end of a year to estimate total retail sales 
for the year. Suppose, for simplicity, that a 
list is available of the stores in the population 
under consideration, that there are no changes in 
stores during the year, and that we have informa- 
tion on the approximate size of each store as 
measured by number of employees in a recent 

payroll period. Such distributions tend to be 
highly skewed, with many small establishments, and 
relatively fewer as size becomes larger, but with 
the large stores accounting for a high proportion 
of the total sales. 

A simple probability-sampling procedure to 
estimate total sales might then be to (a) divide 
the establishments into strata based on the prior 
approximate information on employment size (and 
perhaps other information); (b) draw a sample from 
each stratum, taking account of the principles of 
optimum allocation; (c) obtain the information on 
sales from the sampled ~stablishments; and (d) 
prepare estimates from the sample. In practice 
such a procedure will yield a higher fraction of 
the establishments in the sample for the larger 
employment size-classes, with decreasing sampling 
fractions for successively smaller size-classes of 
establishments. Suppose such a sample is drawn, 
and that the desired data are collected from the 
sampled establishments. Then, with probability 
sampling, the establishments will be weighted by 
the reciprocals of the probabilities of selection 
so that the estimator of total sales for all 
establishments might take the form'Yp = (~w/~w)X 

where ~w = (F~NhYh)/(Y~Nh), Xw = (ENhXh)/(ZNh), X 

is the known total employment for all listed 
establishments, Yh is the average sales for the 
sampled establishments in size class h, x h is 
the corresponding average employment figure from 
the sample, N h is the number of establishments 
on the list in size class h, and the sums are over 
M strata. The Yw and Xw are thus weighted 
means of the Yh and Xh" 

The assumption of a superpopulation model may 
lead to a different approach to estimation, given 
the observed sample. We might conclude from prior 
experience, or observe from a scatter chart of 
the individual sample returns, or both, that the 
relationship between sales and employment could 
be represented approximately by a straight line 
through the origin, and that the variability of 
sales around the regression line increases as 
employment size increases. More specifically, 
given the employment size of an establishment, 
its sales might be regarded as a random variable 
whose expected value falls on a regression line 
which passes through the origin, and with 
variance around that line proportionate to the 
expected value, and thus also proportionate to 
the employment size. These relationships imply, 
for establishment i, that 

2 
Yi = Sxi + ~i;£'i = ~; Oi = £~ = 0 x i 

These equations then represent the super- 
population model. The actual sales, Yi, observed 
for establishment i is assumed to be a realiza- 
tion of a random variable, Yi, subject to var- 
iance ~2 i" 

If this model holds, the variance of the 
sample estimate is reduced by disregarding the 

82 



procedure by which the sample was selected. We 
need only estimate the regression coefficient, 
~, from the sample. The least squares estimate 
of ~ is simply the ratio of the unweighted 

A 

sample means, i.e., ~ = Yu/Xu, where Yu = 
~Yi/n and Xu = ?xi/n. Then the estimator of 
total sales for the listed population is YM = 
~X = (~u/~u)X. Note that this estimate is 
similar to the one from the probability-sampling 
approach except that it is based on a ratio of 
unweighted sample means. 

Another difference between the two ap- 
proaches is in the choice of the variances that 
are used to measure the precision of the two 
estimates. In the case of probability sampling 
the variance is defined as the squared error of 
the estimate averaged over all possible samples 
that would be obtained from the finite popula- 
tion under a specified sample design. For the 
superpopulation approach, the variance is 
defined as conditional on the sample actually 
observed, and the variance is over the possible 

realizations for the observed sample. If the 
model holds, the variance of the model-dependent 

estimator over possible realizations for the 
fixed sample will be smaller than that of the 
probability-sampling estimator. 

The use of the variances over realizations 
for a fixed sample results in substantial 
simplifications and other advantages, if the 
model is acceptable, or sufficiently so, and 
substantial disadvantages if it is not. We 
examine these implications for the illustrative 
example described above. 

Suppose the scatter chart for a sample 
of 200 observations drawn as developed above 
looks like that shown in Figure I. Certain 
characteristics of the population and of the 
observed sample are also summarized in Figure i. 

Not ice that ~u, the unweighted mean of the 
sampled x's, is considerably higher for the 
sample than X, the mean for the population. 
This results from the sample-selection procedure 
indicated earlier whereby the sample was drawn 
to achieve approximately optimum allocation for 
the probability-sampling approach, with consid- 
erably higher sampling fractions for the larger 
establishments than for the smaller. If the 
model holds it follows that the point (Xu, Yu) 
will be approximately on the regression line 
(within the range of sampling variability) 
and its expected value will be exactly on the 
regression line no matter what sample is drawn. 

The variance of YM, conditional on the ob- 
served sample, would be used under the model-de- 
pendent approach to characterize the variability 

of the estimated average. If the model is valid 
it is an appropriate measure of the variance of 
the estimate. 

The risk in taking the model-dependent 
approach is that the model may not hold. 

Suppose the (unknown) regression line for the 
population was in fact as illustrated in Figure 
i. Both the line through the origin (i) and the 
assumed true regression line (2) appear reason- 
ably consistent with the observed sample data. 
However, if the unknown true regression is as 
shown, then the sales estimated from the model- 
dependent approach will tend to underestimate 

15 . 

X = 9.965 

Y = 2.8~3 

Xw= 9. 935 

v = 2.794 

i0 

Xu= 14. 644 

" yu = 3.954 

n = 200 

J 

• " j ~i f 
• .. .j-~) 

. J  f. ~- 

• / . t  ./.~-" 
j "  . . . .  J '  

- . . . ' .  • . .  • . 

5 . . .  . . . .  . 

. . . . . . . ; . . . :  .. 

,, 0 x 
0 5 I0 15 20 25 30 35 40 45 

PiF~. i. Scatter chart for a sample of 200, dra~m with approximately optimum allocation 
to ten size strata based on x. The lines shown are (i) the line throuy~h the 
origin and the population means and (2) the population re~ression line. 
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sales, and to overstate the precision (i.e., 
underestimate the width of the confidence 
interval of the estimate). It will provide a 
confidence interval that will include the value 
being estimated with a probability that is 
smaller than the nominal confidence coeffi- 
cient. On the other hand, if the true regression 
is indeed a line through the origin, and the 
conditional variances around the regression line 
are as assumed, the model-dependent approach 
provides an appropriate estimated variance and 
computed confidence interval. 

The probability-sampling estimator will 
have a higher variance, and a longer confidence 
interval, than the model-dependent estimator. 
However, probability sampling protects against 
systematic errors due to model failure because 
the variance of an estimator is computed over 
all samples possible according to the design. 
With sufficiently large samples probability 
sampling will provide a confidence interval 
that will include the value being estimated with 
a probability equal to or greater than the 
confidence coefficient, independent of the 
population distribution or model assumptions. 

2. An Illustrative Example 

To illustrate some of these points, we 
have assumed a bivariate superpopulation and have 
generated a realized population from it that we 
regard as a realistic approximate representation 
of some populations that have served as examples 
in some papers that advocate the use of model- 
dependent designs in drawing inferences about a 
finite population (see, for example, Royall and 
Cumberland [1977]). 

The realized population was generated 
as a simple random sample of 14,000 elements 
from the superpopulation in which the variable x 
has a Gamma distribution. The x-variable is 
assumed known and available for the realized 
population. 

The variable y was also generated for 
the 14,000 members of the realized x-population, 
from a superpopulation with a conditional 
distribution which is also approximately a Gamma 
distribution such that 

i 3/2 
~(Ylx) = .4 + .25 x, Var (Ylx) = f6 x 

The y-values are presumed unknown to the analyst 
except as observed for a sample. 

We chose to generate a hypothetical popula- 
tion for an illustration, instead of using an 
available actual population or sample, because 
it would then be feasible to know the superpopu- 
lation that generated the realization, and the 
characteristics of a realized population, as 
well as of repeated samples of specified design 
from that population. 

The population was divided into ten strata 
defined by intervals of the variable x, such 
that the aggregate values of the x-variable were 
approximately the same for each stratum. Then 
samples of equal size were drawn from each 
stratum. Thus, variable sampling fractions were 

used, approximately proportionate to the Xh, 
following "rules of thumb" that are sometimes 
adopted to obtain a rough approximation to 
optimum allocation of the sample to strata for 
such populations. 

This sample selection was repeated 1,000 
times for each sample size (2 per stratum, 4 
per stratum, i0 per stratum and 20 per stratum 
to yield samples of 20, 40, 100, and 200). 
For each sample five estimates of the 
mean were calculated, along with estimates of 
their variances from the sample. These were 

(I) the simple unbiased estimator 

i0 nh 
N 

-- _ i Y, h ~ Yhi 
Yw - N h=l n i=l 

h 

(2) the regression estimator 

= +b(X- x ) Y' Yw w 

where x w is defined analogously to Yw, X is the 
known population mean of x, and b is defined by 

i0 nh 

y. 2 y (Xhi_~w) (Yhi_~w) 
b = h=l Nh i=l 

i0 nh 

2 g (x h -x ) 2 E Nh i w 
h=l i=l 

(3) the ratio estimator 

~" = (~w/~w) x 

(4) the best linear unbiased estimator 
under the model 

~Y = Bx Var Y = o2x., 
i i' i I 

Cov (Y Y.) = 9, i#j 
i' J 

which has the form 

lY'YYhi/Y'Y'Yhi -- /x ) X. 
.... n m ~ = (Yu u 

We shall refer to this as model i. 

(5) the best linear unbiased estimator 
under the model 

~Y = Bx Var Y = O2x ~/2 
i i' i i ' 

Cov (Y Y ) = 9, i#j 
i' j 

which has the form 2/ 

--iv ~/2 ~/2 ] 
y = [ (Z~Yhi/Xhi )/Y,Y.Xhi . 

We shall refer to this as model 2. 

For each of the first three estimators, 
the conventional estimator of the variance was 
calculated from each sample. In addition, the 
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adjusted estimator of variance (VH) suggested 
by Royall and Cumberland (1977) was calculated 
for the ratio estimator, but differed trivially 
(less than I/2 percent for samples of 20, and 
much smaller differences for larger samples) and 
has not been included in the summary. For the 
model-based estimators, the variance estimators 
suggested by Royall and Cumberland (1977) were 

calculated. 

These estimates are shown in Table I. 
In addition, for each of the five estimators, 
the variance, bias and mean square error were 
estimated from the 1,000 replications, and the 
results are also displayed in Table i. 

Table i. Results of 1,000 replications for sample sizes 20, 40, lO0 
and 200, for the illustrative example. 

[~, .~' ,7' [ , , ,  yi,, 

Estimates from 1,000 
replications 

Variance 
Samples of 20 .0978 .131 .0920 .0836 .0808 

40 .0599 .0640 .0580 .0510 •049] 
I00 .0190 .0184 .0181 .0169 .0157 
200 .0103 .00991 .00993 •00906 .00875 

Bias 
Samples of 20 -.002 -.000 -.001 -.122 -.063 

40 -.00| .000 -.002 -.13] -.070 
I00 -.001 .000 -.001 -.135 -.072 
200 .003 .003 .002 -.130 -.068 

MSE 
Samples of 20 .0979 .131 .oq21 .0986 .084~ 

40 .0599 .0640 .0580 .0682 .0540 
i00 .0190 .0184 .0182 .0351 .0200 
200 .0103 .00903 .00995 .0260 .0133 

Theoretlcal variance* 
Samples of 20 .i037 .0986 .0966 .0792 .0~19 

40 .0518 .0493 .0483 .0396 .0460 
I00 .0207 .0197 .0193 .0158 .0184 
200 .0104 .00986 .00966 .0072 .00919 

Average of variance 
estimates from 1,000 
replications** 

Samples of 20 
4O 

I00 
200 

• I01 .0812 .0952 . 0789 .092q 
.0515 .0454 .0479 .0394 .0457 
.0208 .0190 .0193 .0158 .0185 
.0103 .00955 .00965 .00792 .00917 

For the variances of ~' and y", the numbers shown are the conventional 
Taylor approximations to the variance. 

For the weighted mean and the re~%resslon and ratio estimators, the 
variance estimators are the conventional ones. For Models I and 2, 
the variance estimators are the so-called "error-variances," namely 

(I/n){I/(n-l)}{~Z [Yhi- ×hi~s/~s ]2 / xhi} ~/~ .q 

and 

1 / (n-l) {T.Z lYhi- Xhi (Z~vt, i . / Jx -  hi.)/r'Z'/Xh i ]2/×h{2}. ~:~ tZl¢'xh i 
respectively where [ = (I/n)~Y, Xhi Ys = (I/n)ZZYhi and n is the total, 

sample size. For Model 2, the computed error variance is the mean 
square difference between the estimate and BX rather than the difference 
between the estimate and the random variable ~• There is some question 
as to which is appropriate. The difference between them is stoat1. 
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Figure i shows the results of this exer- 
cise for a stratified sample of" 200 from the 
realized population obtained by the procedures 
by which the 1,000 replicates were obtained. We 
suggested in Section 1 that it might appear 
reasonable to consider a line through the origin 
as an acceptable approximation for a model. The 
model-dependent estimators 1 and 2 were chosen 
on this assumption, along with ignoring the 
sample-select ion plan. 

If a test of significance were made to 
evaluate whether or not it was reasonable to use 
a line through the origin, the test result would 
of course depend on the sample size available 
and the particular sample observed. It would 
also depend on (but not be sensitive to) the 
conditional variances assumed in doing the 
test. From such computations (not shown) we 
conclude that a line through the origin is more 
likely than not to be accepted as a plausible 
model for samples of less than about 400, if one 
made a test before adopting the model, and is 
more likely to be rejected for larger samples. 
With a sample of 400 the chances are about even 
that a model 1 estimator would be adopted on the 
basis of a test of the hypothesis that the 
intercept of a straight line is zero with a 
significance level of .05. However, for a 
sample of 400 the bias squared is about four 
times the variance. 

Royall and Eberhardt (1975) emphasize 
the bias of the conventional estimator and 
illustrate it with simple random samples. It is 

seen in this illustration that stratification 
can control the bias satisfactorily. 

The variances estimated from the 1,000 
replications (the first deck of numbers in 
Table i) have approximately the expected rela- 
tionships. 3/ For model i the estimated vari- 
ances average approximately 9 percent smaller 
than the variances of the ratio estimator, and 
about 12 or 13 percent smaller for model 2. 

Also, the estimated biases of Yw, Y' , 
and y'' are trivial for all sample sizes illus- 

trated (the expected bias for Yw is zero). 
The biases of the model 1 and 2 estimators, 
estimated from the 1,000 replications, are 
negative and approximately constant for all the 
sample sizes, being about 4 percent for model 1 
and about 2 percent for model 2. Thus, even 
though the model-dependent estimators have 
moderately smaller variances than the conven- 
tional estimators for all the sample sizes, 
their mean square errors are greater for the 
higher sample sizes, and would be much greater 
for still larger samples. The break-even point 
appears to occur at a sample size of about 20 
for model i, and between 40 and i00 for the 
model 2 estimator (which assumes the correct 
conditional variance of y). 

In the case of the model 1 and 2 esti- 

mators, the observed bias is clearly the result 
of the fact that the estimators are inconsistent 
because they take no account of the sample 
design. The bias is reduced by model 2, since 
the estimator assigns relatively smaller weights 

to observations in the higher strata, but is 
still substantial. 

Royall and Herson (1973) and Royall and 
Cumberland (1977) suggest use of balanced 
samples, with various means of balancing, to 
achieve robustness by reducing the bias of the 

model i estimator. An overall balanced sample 
(as suggested by Royall and Herson) is very 
closely accomplished by proportionate stratified 
sampling with sufficient stratification. In 
practice stratification is often carried to the 
point of selecting two units per stratum. In 
our illustration only ten strata are sufficient 
to achieve reasonably good balance (that is, 
small departure of ~ from X). 

We present in Table 2 the results from 
proportionate sampling (using the same ten 
strata). More strata could be introduced, 
but the variability in the ~ for these strata 
is small enough that little more could be gained 
for the added work. The bias is seen to be 
trivial for the model 1 estimator, as for the 
first three estimators. However, the robustness 
of balanced sampling depends on the assumed model. 

Ta]>]e 2. Results of ],00(] replications of: an 
a!,!~roxinately ~ro~ortionate stratified 
sample* of size I00. 

~w ~' ~,, ~,,, ~v 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Average of 
estimates 
from 1,000 
replications 

Variance .0215 .0215 .0211 .0213 .0199 
Bias -.011 -.009 -.012 -.015 .119 
}~SE .0217 .0216 .0213 .0216 .0341 

Theoretical 
variance** .0240 .0229 .0229 

AveraF~e of 
variance 
estimates** 
from 1,000 
replications .0236 .0217 .0225 .0199 .0259 

* The design is referred to as approximately pro- 
portionate stratified because of the trivial 
variation in the weights. Note that yw-Yu~-y ''' 
(and Xw-Xu) in these results. The weighted and 
unweighted averages would be identical except 
for trivial variations in the weights because 
n h must be integral and cannot be proportion- 
ate exactly. The coefficient of variation 0f 
either Xu or Xw for stratified samples of I00 

is 1.4 percent. 

**See the footnotes in Table I. 
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Thus, it is seen by comparing Tables 1 and 2 that 
for this illustrative population a balanced sample 
results in a substantially increased bias for an 
estimator based on model 2. Moreover, an overall 
balanced-sample approach restricts the sample 
design, and does not allow the sometimes substan- 
tial gains from stratified sampling with approxi- 
mately optimum allocation. Also, it may not 
achieve balancing for various subdomains of 
interest. The price paid for overall balancing is 
increased variance as compared to approximately 
optimum allocation, as is seen by comparing Tables 
1 and 2. The price paid would be considerably 
more for many commonly encountered populations 
that are much more skewed (see Hansen et al. 
[1953] for examples). 

Obviously, the biases of the model 1 
and model 2 estimators could be made trivial, 
in this particular case, by using a line not 
required to go through the origin. However, 
this would not be a general solution. For 
example, a model that would fit a population 
better might be nonlinear. In general, more 
robust estimators and designs could be used in 
an effort to resolve such problems of model-de- 

pendent approaches. However, the problems of 
model failure will remain unless the designs are 
sufficiently robust as to be model-independent, 

in which event they are or are essentially 
equivalent to probability-sampling designs. 

3.1 Role of "Best" Estimators 

Godambe (1955) showed that there is no 
uniformly best linear unbiased estimator for 
estimating a population total, where linear 
was defined in a general manner that included 
many classes of estimators. Survey statisti- 
cians early recognized that there was no best 
estimator, and in any event had not confined 
themselves to unbiased or linear estimators 
(whatever the definition of linear). Thus, 
Godambe's results did not create any difficul- 
ties. The standard practice had been to attempt 
to determine for which types of finite popula- 
tions a design that included an estimator Yl 
had a smaller mean square error than an alterna- 
tive design that includes an estimator Y2" 
Minimization methods had been used only within 
specific classes of estimators or other aspects 
of des ign. 

It should be noted that Godambe's proof 
did not contradict the existence of best linear 
unbiased estimators as discussed by Neyman (and 
others) since Godambe adopted a different 

definition of linearity. It should be noted, 
also, that in probability sampling unbiasedness 

often results in much larger mean square errors 
than necessary. Instead, consistency of estima- 
tors has been the general criterion adopted. It 
seems obvious that for the general class of 
consistent estimators there are no uniformly 
best estimators. 

Much interest is still expressed in 
best unbiased estimators in model-based ap- 
proaches. The need for assuming models in 
order to have best estimators is expressed by a 
number of authors (Godambe [1978]), Basu [1971], 
Royall [1970], Sarndal [1978], Cassel et al. 

[1977], and others) and is summarized by Smith 
(1976) in discussing Neyman's 1934 paper. He 
states... "Although a best estimator may be 
found in each class [of linear estimators] this 
does not imply that any one of the estimators is 
best for all classes. This limits the value of 
Neyman's concept of efficiency." (p.186) 

..."One consequence of this nonexistence 
theorem is that no empirical comparison can 
ever be conclusive, for in any particular 
case somebody may be able to construct a better 
estimator." 

"The problem of a lack of best estimators 
arises because of the generality of Neyman's 
formulation of the solution to the inference 

problem. Inferences are made with respect to 
the p-distribution for any population Y, regard- 
less of its structure. But this is too much 
freedom for a satisfactory theory of inference 
and no optimum properties can be found for all 
populations." (p. 187) 

Neyman's comment in his fundamental 1934 
paper is relevant and expresses our point of 
view. He says: ..."The problem of the choice of 
estimates has -- as far as I can see --mainly a 
practical importance. If this is not properly 

solved (granting that the problem of confidence 
intervals has been solved correctly) the result- 
ing confidence intervals will be unnecessarily 

broad, but our statements about the values of 
estimated collective characteristics will still 
remain correct. Thus I think that the problems 
of the choice of estimates are rather the 
technical problems, which, of course, are 
extremely important from the point of view of 
practical work..." (Footnote p. I01) 

Added costs of an estimation procedure 

(in dollars or time) may exceed the gains from 
reduced variance. In many sample surveys 
multiple statistics are involved, often a great 
many of them. Also, timeliness of results is 
often an important consideration. One may then 
find it advantageous to adopt estimators with 
larger variances than those of available alterna- 
tive estimators for many or all of the statis- 
tics. This is a common situation, illustrated 

by the Current Population Survey of the Bureau 
of the Census, a complex repetitive survey 
serving many different purposes. One of the 
most important purposes is to produce labor- 
force statistics each month. Several thousand 
different estimates are published each month, 
and the data are processed and the estimates are 
prepared and published within about three weeks 
after the close of the eight-day period during 
which the data are collected. 

3.2 Robustness in Surveys 

In principle, and ordinarily in fact, 
robustness is achieved in probability-sampling 
surveys by the use of sampling with known proba- 
bilities (i.e., randomization) and consistent 
estimators, and using a large enough sample that 
the central limit theorem applies, so that the 
estimates can be regarded as approximately norm- 
ally distributed. Also, variance estimates for 
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some estimators are asymptotic approximations that 
are satisfactory for large enough samples. Much 
of the work on sample design consists of the study 
of the population. This is done in order to 
adapt the sample design to various special 
characteristics of the population in order that 
(a) the possible samples result in acceptably 
small variances at least for the principal items 
estimated, (b) for a moderate sample size the 
distributions of the statistics will be approxi- 
mately normal and asymptotic approximations will 
be acceptable. 

Occasionally such efforts are not fully 
successful and a problem occurs when an outlier 
is observed in a sample. Sometimes there is the 
related, but often much less serious, problem 
that there are undetected cases not in the 
sample but that would be outliers if they had 
happened to be selected for the sample. What 
constitutes an outlier in a sample is not easy 
to define, but an illustration is a case where a 
single sampling unit in a sample of, say, 1,000 
such units, influences an estimate by, say, 10 
percent or more, and also has a substantial 
impact on the variance estimate. When the 
outlier is excluded the estimate is 10 percent 
different than if the outlier is included. 
What constitutes outliers, in the sample or not 
in the sample, depends, of course, on the size 
of the sample. An outlier in a sample of i00 
might not be an outlier if the sample were 
increased to a thousand. Some unknown potential 
outliers in the population (and not in the 
sample) are of no concern if they are insuf- 

ficient to influence importantly aggregate or 
average characteristics of the population. If 
they are large enough to have such important 

impact, they can be adequately dealt with only 
through appropriate treatment in sample design. 

When an outlier occurs in a sample the 
normal approximations (and any asymptotic approx- 
imations) may not be acceptable. As indicated 
earlier, the problem is avoided if the initial 

efforts at design are successful. If they are 
not and one or two outliers occur, one of two 
kinds of efforts, or both, are ordinarily taken 
in probability sampling. The first is to 
exclude the outlier from the sample, or to 
arbritrarily reduce its weight in the sample 
estimate. The second is to investigate why the 
outlier occurred, and to take steps to remove or 
reduce such problems in the entire population 
from which the sample was drawn, or in a larger 
sample, and thus avoid or reduce the impact of 
an outlier. 

An illustration may help. A sample of 
city blocks may be drawn as first-stage units, 
with listing of housing units (hu's) in the 
sampled blocks, and subsampling from the listed 
hu's. Varying probabilities of selection of the 
blocks may be used to control variation in size, 
based on prior information on block sizes. This 
information may be supplemented by special work 
with building permits so that new construction 
is reflected in the measures of size. Alterna- 

tively, a new procedure may be used for sampling 
new construction occurring since the date of the 
information that provides the measure of size. 
Such an approach ordinarily is quite effective. 

However, it may be found that the sample in- 
cludes one block that is an outlier. This might 
arise, for example, because the block identifica- 
tion was improper. In any event, one block is 
found in the sample that was expected to have 
only a few or no housing units, and in fact 
contains a large development, with perhaps a 
hundred housing units in the sample after the 
subsampling from the listing. The result is 
substantial so that multiplying by the recipro- 
cal of the probability of selection would lead 
to that block accounting for, say, 20 percent of 
a sample-survey estimate. In such a case it may 
be feasible to take corrective action, e.g., by 
driving past all or a large sample of blocks 
with small measures of size, and redetermine the 
probability of selection of such blocks so that 
there will no longer be outliers. If such or an 
equivalent procedure is not feasible for an 
outlier it may be desirable to reduce the weight 
of the sampled outlier. In such an event it is 
important to carefully qualify any statements of 
precision or MSE of the sample estimate by 

indicating the potential effects of such action. 

If one is applying a model-dependent 
instead of a probability-sampling approach the 
kind of outlier problem just illustrated may or 
may not be a serious problem. In a model-depen- 
dent design an outlier is an observation that 
deviates considerably from the model. If the 
outlier in the probability sample is made an 
outlier by multiplying by the reciprocal of a 
small probability of selection, then the model- 
dependent approach, if it ignores the probabili- 
ties of selection, may avoid the problem, in 
that the estimate is not influenced importantly 
by this observation. However, the consequences in 

terms of potential bias in the model-dependent 
estimate are not removed. An outlier in a prob- 
ability sampling approach may or may not be an 

outlier with a model-dependent estimator given the 
same sample, and vice versa. This particular 
problem seems to be more or less a stand-off in 
the two procedures. 

The issue of robustness arises when model- 
dependent methods are used for sample selection 
or estimation. Royall (1970) suggested cutoff 
samples in some situations where a size measure 
(an x-value) is available for each unit in the 
population. For a sample of n, this calls for 
taking the n cases with the largest x values. 
This approach was suggested for populations 
having characteristics similar to the illustra- 
tive example in Section 3, in which the line 

through the origin seems to be an acceptable fit 
to the data, and with increasing conditional 
variances of y as x increased, but at a rate 
such that 

(7 2 /x 2 
ylx 

decreases as x increases. For the particular 
illustrative population, such a design results 
in a relatively larger bias, even for quite 

small samples, and the bias will greatly out- 
strip the variance. 

Royall has discussed various procedures 
to reduce the risk of bias with model-dependent 
designs, and seeems, by striving for robustness, 
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to have moved successively closer to methods 
used in probability sampling, to the point where 
relatively little difference exists between some 
of his more recently recommended approches and 
probability sampling. Thus, in 1970 and 1971 he 
recommended cut-off methods in situations where 
some commonly-encountered models seemed to hold. 
He also recommended, in 1970, disregarding the 
sample-selection procedure in estimation from 
the sample. However, in 1973 Royall and Herson 
recommended balanced samples, because the lack 
of robustness of the methods recommended earlier 
became increasingly obvious. Further, they 
recommended disproportionate sampling with 
optimum allocation of samples to strata (taking 
account of costs), with balanced sampling within 
strata, and using separate ratio estimates to 
individual-stratum aggregates of an independent 
variable. The variable selection probabilities 
are reflected so that this becomes a consistent 
estimator. By this time the difference between 
probability-sampling and model-dependent ap- 
proaches has substantially disappeared (totally, 
if random selections are made within strata). 
They use model-dependent approaches to optimize 
the definition of the size-strata, as would a 
probability sampler. Having gone this far, they 
would, by taking the final selections by a 
probabilit.y process within the approximately 
optimized strata, increase the variance trivi- 
ally as compared with purposive balanced sam- 
pling within strata, even if the assumed model 
holds. It seems highly desirable at this stage 
to avoid the risk of bias and the necessity of 
defending an assumed model, and concern if it 
does not hold. Indeed, if after the steps 
described, the model assumptions make more than 
trivial reduction of confidence intervals, there 
is still the risk of seriously misleading 
estimates and confidence intervals. Such risks 
will be especially serious when relatively 
precise and accurate results are needed and paid 
for with large sample size. 

4. Some Additional Remarks and Comments 

4.1 Analysis of Survey Results 

Survey results often are used to describe 
characteristics of a finite population -- 
for example, the number of unemployed at a point 
or interval of time, or for analysis. Analysis 
may relate to the specific finite population, 
as in testing a hypothesis concerning a differ- 
ence between ratios for two groups, say, the 
unemployment rates of males and females. 

Very often, on the other hand, the analysis 
is concerned with inferences about a cause 
system. In this situation the finite population 
can only be regarded as a realization of that 
cause system. What a probability-sampling 
approach can do is provide appropriate informa- 
tion about the available realization, or succes- 
sive realizations, of the cause system, and for 
this the above discussion is directly relevant. 
However, for inferences about the cause system, 
and the ability to predict future developments, 
only model-dependent approaches are relevant. 
Great caution in interpretation is needed, 
however, as witnessed by many experiences with 
failures of inference and prediction. 

A major issue in inferences to cause 
systems from surveys of finite populations has 
involved, again, the differing points of view 
that have been discussed earlier, on use of 
survey results. One view often expressed is that 
the inferences to a cause system do not depend 
on the survey design, and that the design of the 
sample in such instances should be ingnored. 
The analysis is done as if the only source of 
variation were simple random sampling from a 
hypothetical superpopulation. Another view is 
that the design is relevant, including effects 
of intraclass correlations from cluster sam- 
pling, variable sampling fractions, and other 
aspects of design, and that failure to recognize 
their effect will lead to understatement of 
confidence intervals and overstatements of 
precision in inferences to the cause system, and 
that such factors should be appropriately 
reflected in the models, as in drawing infer- 
ences about the finite population. We concur 
strongly with the latter view. However, discus- 
sion of this topic, beyond simply mentioning it, 
is beyond the scope of this paper. Kish, and 
Kish and Frankel (1974) have pioneered some of 
the work in this area. 

The topic deserves additional work and 
communication, including the attention and 
contributions of those concerned especially with 
the foundations of survey sampling. 

4.2 Inferences from Prediction Theory 
and from Probability Samples 

A criticism of probability sampling by 
some who advocate model-dependent approaches 
is that probability-sample-survey theory ignores 
the fact that to estimate, say, the population 
total is equivalent to predicting the total of Y 
for the part of the population not in the 
selected sample. Hence, it is asserted that 
there must be assumptions made, in the sense of 
probabilistic dependence on the parameters, that 
relate those in the sample to those not in the 
sample, in order that any inference about those 
not in the sample will be meaningful. If such 
relations exist, and are known, probability 
select ion is unnecessary. This criticism is 
related to another that asserts that when the 
sampling is done all one has is the unique 
sample and that the selection process should be 
ignored. In this view, if there is no model 
that provides a relationship between the infor- 
mation for the selected sample and the informa- 
tion for the balance of the population, how that 
sample was selected cannot create the relation- 
ship. However, we wish to emphasize that 
probability-sampling methods provide a confi- 
dence interval for the population character- 
istic being estimated, and for large enough 
samples the confidence interval will be valid 
and short enough to provide as precise state- 
ments as desired about the value being estima- 
ted. The question becomes one of the gains and 
losses from the assumption of a particular 
superpopulation, with increased risk of mislead- 
ing results from dependence on superpopulation 
models and their consequences as sample size 
increases. 
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4.3 Some Concluding Remarks 

It is always possible, in selecting samples 
and making estimates for a finite population, 
to make assumptions that will yield shorter 
computed confidence intervals per unit of cost 
than can be obtained by applying probability- 
sampling methods . However, the probability 
that the computed interval covers the population 
value may be substantially less than the cited 
confidence coefficient. The essentially assump- 

tion-free probability-sampling methods, taking 
advantage of models only to guide design choices 
often can be applied with little or no increases 
in unit costs for achieving a given length of 
confidence interval as compared with the compu- 
ted interval for reasonably carefully applied 
mode 1-dependent methods . If sufficiently 
important public policy or other issues are 
involved --as is often the case -- it may be 
well worth paying even a substantial increase in 
unit costs to obtain the additional assurance 
provided by the probability methods. 

On the other hand, when surveys are taken 
with relatively small samples, even. if finite- 
population estimates are the goal, the samples 
may be too small for the essentially assumption- 
free aspects of finite theory to be reasonably 
applicable. It may then be an advantageous use 
of resources to use methods that depend on the 
validity of superpopulation models, perhaps 

select purposive samples, and make estimates 
based on the assumed distributions or models. 
In most practical problems the essentially 

assumption-free aspects of probability-sampling 
theory are applicable only with acceptably 
larger samples. 

There are major advantages in the accepta- 
bility and face validity of results that can be 
supported without having to defend model-based 
assumptions. This may not be so important for 
personal uses of data, but it is often vital 
when sample estimates are for finite populations 
and results are to be used for important public- 
policy actions or by opposing factions with 
different interests when stakes are large. 

One special caution is needed, to avoid 
claiming too much for even probability-sampling 
results. In the above discussion we have 
ignored the existence of measurement or response 
errors. Also we have mentioned only briefly 
problems of control and adjustment for nonre- 
sponse. In these areas we do not have finite- 
population concepts to apply, and have no 

choice. Models must be assumed, and to the 
extent that good models and judgment are applied 

they may aid in improving the control and 
results. However, in our judgment the need for 
use of model-dependent methods in some phases of 
survey work does not justify abandoning the use 
of probability methods in other important 
aspects of surveys. 

I. "Best" estimators are not possible 
except by unduly restricting the class of 
estimators. A "best" estimator obtained by 
assuming a model depends on the validity of the 
model and may yield confidence intervals that 
are seriously misleading. Moreover, model-depen- 
dent approaches in which the model is a consid- 
ered one are feasible for one or a few statis- 
tics but not for many .statistics from a survey 
since multivariate models may be required. 

2. It is advantageous, as compared with 
use of "best" model-dependent estimators, and 
sufficient, to have a "good" estimator based on 
a reasonably large probability sample that 
provides a valid and acceptably small confidence 
interval. 

3. Model-dependent designs, even those 
that use "robust" procedures, face the risk of 
substantially understating the MSE, even when 
the model appears satisfactory. Model-dependent 
approaches in which the model is adjusted to be 
consistent with survey results may substantially 
understate the lengths of the confidence inter- 
vals, whether the confidence interval is viewed 
as conditional on a single sample or for all 
possible samples. This is especially true as 
sample sizes increase. 

4. Probability-sampling methods, with 
reasonably large samples, provide protection 
against failures of assumed models, and provide 
robustness for all estimates, including esti- 
mates for any subdomains for which the samples 
are reasonably large. Models are appropriately 
used to guide in design of probability samples. 

5. Ordinarily, with reasonably large 
samples, sampling plans and estimators based on 
good probability-sampling methods lose rela- 
tively little in efficiency as compared with 
model-dependent methods even when the models are 
valid. 

6. When inferences are made to a cause 
system, instead of to a finite population, 
there is no choice. Probability-sampling 
methods are not available for drawing samples 
from a causal system, but only from some finite 
realization of that cause system. One must use 
model-dependent inferences. Nevertheless, 
probability samples of finite realizations of 
the cause system may be highly useful in ar- 
riving at inferences in many situations. 

We conclude with a summary of guiding 
principles that we believe are indicated by or 
are reasonable inferences from the discussion 
and illustrations that have been presented: 

7. The proper use of models has much 
to contribute to survey design. We urge contin- 
uing strong efforts, taking the fullest feasible 
advantage of models, but ordinarily within 
the framework of probability sampling, i.e., 
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using designs and estimators that are not 
model-dependent. 

I/ At the suggestion of V.P. Godambe, this paper 
is dedicated to the memory of our very dear 
friend and close collaborator, William N. 
Hurwitz. We thank Professor Godambe for the 
suggestion. 

2/ The effect of using this BLU estimator 
instead of the predictor BLU estimator here 
is trivial. 

3/ The samples of size 40 are atypical in that 
their variances are larger than expected for 
all estimators. However, the relationships 
among the estimators are similar to those 
for the other sample sizes. Also, for 
this population, the regression estimator 
and the ratio estimator show little differ- 
ence, except that the ratio estimator has a 
smaller variance than the regression estima- 
tor for small s ampleso If the (7~[ x has been 
proportionate to x, instead of to x3/2, the 
ratio estimator would have been the optimum 
for simple random samples, contrary to the 
results that follow from the use of the Taylor 
approximations. For large samples, the 
variance of the regression estimator is equal 
to or less than that of the ratio estimator, 
and they are about equal in the illustration 

for samples of 100 or more. Also, the Taylor 
approximation to the variance for the regres- 
sion estimator appears to be unsatisfactory 
for small samples (20 and 40) from the illus- 
trative population. 
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