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A general attack on the problem of non- 
response in sample surveys is outlined from the 
phenomenological Bayesian perspective. The ob- 
jective is to develop procedures that are useful 
in practice. The plan is to impute several 
values for each missing datum, where the imputed 
values reflect variation within an imputation 
model and sensitivity to different imputation 
models. The analysis of a resultant multi-imputed 
data set is viewed as simulating predictive dis- 
tributions of desired summary statistics under 
imputation models. Three tasks are defined that 
are needed to create the imputations: the impu- 
tation task, the estimation task and the model- 
ling task. The imputation task and estimation 
task are technical in nature. The modelling task 
requires the development of new tools appropriate 
for relating nonrespondents and respondents. 

I. Introduction 

The problem of nonresponse in sample surveys 
has recently attracted much interest. Possible 
reasons for this increased interest include (i) 
current surveys appear to be suffering more seri- 
ous problems of nonresponse, (2) there exists a 
growing awareness that standard methods of hand- 
ling nonresponse may not be entirely satisfactory, 
and (3) the statistical issues arising in hand- 
ling missing data form a fertile area for statis- 
tical research both mathematically and computa- 
tionally. 

As reflections of the increased concern with 
nonresponse, we see as examples recent OMB pol- 
idy stating that no survey should be approved 
that anticipates less than a 50% response rate, 
the formation of the National Academy of Sciences' 
Panel on Incomplete Data, an increase in applied 
papers on methods of handling nonresponse, and 
an increase in mathematical statistical papers on 
estimation from missing data. 

My objective is to develop statistically 
sound tools for handling nonresponse in general 
purpose surveys. Hence, I'll be concerned with 
both theoretical appropriateness and practical 
utility. This paper will outline my suggestions 
for a general approach to handling the problems 
of nonresponse. 

Section 2 presents an overview of the ideas 
and motivates the choice to use several imputed 
values for each missing datum as a method of 
simulating predictive distributions of missing 
values. Section 3 discusses how to analyze a 
data set with multiple imputed values. Section 4 
outlines three tasks needed to create a data set 
with multiple imputed values: the imputation 
task imputes values assuming that a model for the 
data has been chosen and that the posterior dis- 
tribution of model parameters has been calculated; 
the estimation task calculates the posterior dis- 
tribution of parameters assuming a model has been 
specified; and the modelling task selects a model 
for the data. The first two tasks are conceptu- 
ally quite straightforward although the technical 
details can be somewhat complicated. The last 

task, choosing appropriate models, requires con- 
ceptual development. 

2. General Approach to Handling Nonresponse 

In order to help motivate my approach to 
nonresponse, I'll begin by describing a few sur- 
veys familiar to me that suffer from nonresponse. 
Several years ago,ETS conducted a survey of 660 
schools for the purpose of studying compensatory 
reading programs, and needed to obtain the princi- 
pals' permission to enter the schools the next 
year for an intensive testing program for the 
students. Of the 660 principals contacted, by 
the end of the survey only 472 completed an 
initial questionnaire indicating willingness to 
participate. Since the principals knew the pur- 
pose of the su'rvey was to study their compensa- 
tory reading programs, concern developed that the 
188 nonrespondents were systematically different 
from the 472 respondents, perhaps having students 
with more severe reading problems. 

A second example is a study on cost of car- 
ing for terminal cancer patients. In this study, 
there were several barriers to actually obtaining 
the costs from the patients. The interviewer 
first had to obtain permission from the patient's 
hospital, then from the patient's doctor; 
then the interviewer was allowed to confront the 
patient's family and, finally, the patient. 
In this study there was a very high nonresponse 
rate, greater than 50%. Again, the suspicion 
was that the nonrespondents differed systemati- 
cally from respondents, perhaps being more in- 
capacitated. 

Another example of nonresponse is item non- 
response on income questions in the CPS (Current 
Population Survey). It is certainly possible 
that those refusing to supply income information 
systematically differ from those willing to 
supply it. 

What do we mean by handling the problem of 
nonresponse in examples such as these? I feel 
that handling nonresponse must mean displaying 
how different the answers from the surveys might 
have been if the nonrespondents had responded. 
Since we cannot know this without obtaining re- 
sponses from nonrespondents, our objective will 
be to show how the answers change under a 
variety of reasonable models. Since "reasonable" 
is partially determined by individual judgment 
(and partially by the observed data), effort 
must be directed not only at showing how answers 
change under different models, but also at 
precisely communicating those models that have 
been used so that the appropriateness of the 
models can be judged. 

2.1 Handlin$ nonresponse by imputation 

The general approach to nonresponse (missing- 
ness) in surveys that I will take here will be to 
impute values for missing data (really, several 
values for each missing datum). The approach 
that imputes one value for each missing datum is 
quite standard in practice, although often 
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criticized by some more mathematical statisti- 
cians who may prefer to think about estimating 
parameters under some model• 

I am sympathetic with the imputation posi- 
tion for two reasons• First, it is phenomeno- 
logical in that it focuses on observable values• 
There do not exist parameters except under hy- 
pothetical models; there do, however, exist 
actual observed values and values that would have 
been observed. Focusing on the estimation of 
parameters is often not what the applied person 
wants to do since a hypothetical model is simply 
a structure that guides him to do sensible things 
with observed values• Second, in multipurpose 
surveys, some form of imputation is just about 
the only practically possible method for handling 
nonresponse, because the data set will be used to 
address many questions now and in the future• 
Remodelling the missing data process each time a 

new question is to be asked of the data base 
seems to be impractical, while creating an imput- 
ed data set is quite practical• 

Of course, (I) imputing one value for a miss- 

ing datum cannot be correct in general, because 
we don't know what value to impute with certainty 
(if we did, it wouldn't be missing); and (2) in 
order to insert sensible values for missing data 
we must rely on some model relating unobserved 
values to observed values• Hence, I see the 
best practical approach to be one where we can 
insert more than one value for a missing datum in 
a way that reflects our uncertainty; the inserted 
values should reflect variation within a model as 
well as variation due to a variety of reasonable 
models• Also, I want to perform the imputation 
in a formal non-ad hoc manner so that I know how 
to interpret the imputed values; that is, so that 
I understand precisely the models used and can 
communicate them precisely to other researchers 
interested in this data set with its collections 

of imputed values. 
Figure 1 displays the kind of data set I 

envision forming when there exists nonresponse. 
Each of M missing data is replaced by a pointer 
to a vector of length I,giving the imputed values 
Of I different imputations• The first component 
of each I-vector refers to the first imputation, 
the second component to the second imputation, 
and so on. For each of the imputations, there 
would be a code describing the model/assumptions 
used for the imputations• The data analyst want- 
ing to study this data set would be obligated to 
analyze it I times, once for each imputation, and 
compare the results• More on this in Section 3. 

2.2 Our theoretical perspective 

Our theoretical approach for performing the 
imputations will be a phenomenological Bayesian 
perspective. The foundations of this approach 
are outlined in Rubin (1978a, 1978b), which pro- 
vides a natural framework for handling the prob- 
lem of nonresponse. In the phenomenological Baye- 

Z 1 

Variables 

Zp 

,..., ) 

Units 
in 

Survey 

I 
i 

J j J 
i 

i 

± 

,..., ) 

,..., ) 

Model for first imputation = . . . 
Model for second imputation = . . . 

Model for Ith imputation = . . . 

Figure I: Data Set with Multiple Imputations for 
Each Missing Datum 

From the phenomenological Bayesian perspec- 
tive, when mechanisms used to sample units and 
record data are known (possibly probabilistic) 
functions of recorded values, the mechanisms are 
said to be ignorable. The advantage of having 
ignorable mechanisms is that we can use the usual 
kinds of models to estimate the unobserved values 
in the survey; more explicitly, when mechanisms 
are ignorable, the distribution of the data may be 

modelled as row exchangeable, that is, essentially 
independent and identically distributed (i.i.d.), 
given some model parameters having a distribution. 
Not surprisingly, in simple problems with ignorable 
mechanisms, this approach gives the same kinds of 
answers that classical sampling theory gives; in 
more comp]icated problems, I find the phenomeno- 
lo~ical Bayesian answers more attractive. 

When mechanisms are nonignorable (for example, 
when there exists nonresponse) the phenomenological 
Bayesian perspective tells us that there is in 
general a separate model for each group of units 
with the same pattern of missingness. The trick 

sian perspective, the missing values have a distri- for drawing inferences when faced with nonignor- 
bution given the observed values• Hence, what we able mechanisms is to tie the parameters for the 
really want to impute is not a single value but different groups of units together so that the 
the predictive distribution of the missing values values we do see tell us something about the 
given the observed values• Such a distribution values we do not see. The phenomenological Baye- 
will of course depend on a model, and displaying sian perspective tells us that we should try a 
the sensitivity of inferences to reasonable range of reasonable models, and for each model 
choices of models is a key objective, calculate the predictive distribution of the 
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missing values given the observed values. The 
idea of imputation is natural in this perspective 
because by producing several imputed values under 
a model we simulate the predictive distribution 
of the missing values under that model. 

2.3 Inherent model sensitivity when mechanisms 
are nonignorable 

The values to impute will depend on the 
models that we decide to use. Nonresponse is a 
difficult problem because there will be no hard 
evidence in the data themselves to contradict 
relevant aspects of a model for nonresponse. 

A small example makes this point rather clear. 
Suppose that we have a population of i000 units, 
try to record a variable Z, but half of the units 
are nonrespondents. For the 500 respondents, the 
data look exactly half-normal. Our objective is 
to know the mean of Z for all i000 units. Now, 
if we believe that the nonrespondents are just 
like the respondents except for a completely ran- 
dom mechanism that deleted values (i.e., if we 
believe that mechanisms are ignorable), the mean 
of the respondents, that is,the mean of the ob- 
served half-normal distribution, is a plausible 
estimate of the mean for the I000 units in the 
population. However, if we believe that the 
distribution of Z for the i000 units in the pop- 
ulation should look more or less normal, then a 
more reasonable estimate of the mean for the 
I000 units would be the minimum observed value 
because units with Z values less than the mean 
refused to respond. Clearly, the data we have 
observed cannot distinguish between these two 
models except when coupled with prior assumptions. 

Because of this need to rely on prior 
assumptions, one of the components of a general 
purpose method of handling nonresponse is the 
ability to display the sensitivity of answers to 
a range of models. For example, as we try a va- 
riety of reasonable imputation models, we should 
be able to see whether the variation in answers 

swamps the usual standard errors that would be 

associated with the answers. At the other 
extreme, we should be able to see whether the 
usual standard errors that are associated with 
the answers swamp the variability that we see in 
the answers as we move from one reasonable im- 
putation to another. Performing repeated data 
analyses on the data set with different imputed 
values appears to me to be the most natural way 
to display this sensitivity. 

2.4 Survey design considerations 

The example in Section 2.3 illustrated the 
inherent model sensitivity to imputation models 
when mechanisms are nonignorable. What can be 
done to reduce such sensitivity? Surveys antici- 
pating nonresponse problems should try to collect 
background variables recorded for all units that 
are (i) highly correlated with variables likely 
to be missing,and (2) related to the reasons for 
nonresponse (i.e., correlated with missingness 
indicators). 

The first criterion is rather obvious; hay -,~ 
ing recorded variables highly correlated with 
missing variables implies that it is relatively 

easy to predict missing values from observed 
values; i.e., under reasonable models, the pre- 
dictive distribution of the missing variables 

given the observed variables has small variance 
because knowing the values of recorded variables 
implies almost knowing the values of missing 
variables. 

The second criterion is important for the 
following reason. If the variables that deter- 
mine nonresponse are recorded for data analysis, 
then the probability of the observed pattern of 
missingness is a function of these recorded 
values and thus the recording mechanism may be 
effectively modelled as ignorable. As mentioned 
earlier, illustrated by the example in Section 
2.3, and further explicated in Sections 3 and 4, 
when mechanisms are ignorable, sensitivity to 
imputation models is greatly reduced. 

Hence, when nonresponse may be a problem, it 
is a good idea to try to collect background vari- 
ables that predict missingness and/or predict 
variables likely to be missing. 

3. Data Analysis with Imputed Values 

Assume for each of M missing values we have 
I imputed values, as illustrated in Figure I. 
These values are ordered in the sense that we 
view them as I M-vectors being used to create I 
completed data sets. This section describes the 
data analysis strategy we propose for these I 
completed data sets. 

3.1 Analyses for each completed data set 

Suppose that there were no missing values. 
Then there is an analysis ar a series of analyses 
that would have been performed. These analyses 
may have been aimed at producing summary tables, 
estimating means and standard errors, performing 

regressions or factor analyses, and so on. I 
would usually prefer the analyses to be Bayesian 
when they are intended to produce inferences to 
a population from which the current data are 
considered a sample (actually phenomenological 
Bayesian). But the issue of proper analysis when 
there is no nonresponse is not the issue here, so 
I will not pursue it. 

The point I wish to make here is simply that 
there is some sequence of analyses that would have 
been performed if there had been no missing data, 
and in these analyses some summary functions of 
the data would have been calculated and examined. 
Call all statistics that would have been calcu- 
lated the vector S. Now when faced with missing 
data and I imputed data sets, the same sequence 
of analyses should be performed on each of the I 
completed data sets. That is, we should treat 
each of the I data sets as if it were the one real 

data set, and so generate statistics SI,...,S_. 
The variation in answers (in the S~) a~ross ~e I 
analyses is telling us about the e~fect of non- 
response on our analyses. 

3.2 Variation in answers under a specific 
imputation model 

Suppose first that all I M-vectors of im- 
puted values were generated under the same model 
for nonresponse. Then the variation in answers 
across the I data sets reflects variation due to 
inability, under the model, of the observed data 
to predict the missing data. More explicitly, 
the distribution of S., i=l ..,I,simulates the 

--I '" 
predictive distribution of S under that model for 
nonresponse. 
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For a trivial example, consider a sample of 
i00 units, 20 nonrespondents and a binomial Z, 
where forty of the eighty respondents have Z = I. 
Suppose that if there were complete data we 
would have calculated the proportion of the i00 
units with Z = i. If we chose a model for non- 
respondents that asserts Z is i.i.d, binomial 

where ~ has, say, a Beta (1/4,1/4) distribu- 
i i 

tlon, then we could take I = I0 draws of ~I from 
Beta (1/4,1/4), and for each draw of 41 , we 
would choose 20 independent and identically dis- 
tributed binomial observations with probability 
~i of being 1 and calculate S = (40 + sum)/100, 
where sum is the number of the 20 draws yielding 
Z = i. 

In some cases, the variation within a model 
may be small, while in other cases it may be 
large. When it is large and the imputation model 
being used is reasonable, sharp inferences will 
not be possible without further restrictions on 
the model being used. In such a case, a proce- 
dure that produced only one imputation under the 
model would clearly be leading the data analyst 
astray. Hence, I feel we must be able to display 
the variation under an imputation model. 

For some models, it may be easy to calculate 
the predictive distribution of S analytically. 
Usually, I believe that it will be easier to 
simulate the distribution, especially for general- 
purpose surveys having S's with many components. 

3.3 Sensitivity of answers to models 

Now suppose that the I filled-in data sets 
represent K different models ussd for imputation. 

Specifically, suppose that I =k~l ~ rk where r k = 

the number of replications of the kth model,rep- 
lications in the sense of Section 3.2. We have 
already discussed that for a fixed model the 
variation in values of S across the r k replica- 
tions simulated the posterior distribution of S 
given that model. The variation in these pos- 
terior distributions across the K imputation 

models represents sensitivity to the imputation 
models. In the example of Section 3.2, an 
alternative model could be that the prior on ~i 
is Beta (1/2,1/4). 

If we placed a prior distribution across the 
K imputation models, then they would really be 
one model since they would generate one predictive 
distribution of S. Often, instead of placing a 
rather arbitrary prior distribution on the models, 
it is more enlightening to display the sensitiv- 
ity to the models. This attack seems especially 
appropriate in cases like nonresponse having data 
that cannot directly contradict the models; i.e., 
the posterior probabilities of the models essen- 
tially equal their prior probabilities. 

If there exists substantial variation in 
answers across the K imputation models, then the 
data analyst who imputed from only one model 
might be drawing sharp conclusions without reali- 
zing that the conclusions are critically dependent 
on the particular imputation model used. Hence, 
I feel that we must be able to display sensitiv- 
ity to reasonable choices of imputation models. 

3.4 .... Base line models assuming ignorable 
mechanisms 

It will usually be wise to include at least 
one model that assumes ignorable sampling and re- 
cording mechanisms; this assumption means that 
the nonrespondents do not systematically differ 
from respondents in other than observed ways. 
Technically, the probability of the observed 
pattern of missing data and sampled units is 
known from the observed values. When mechanisms 
are ignorable, one common data structure may be 
assumed for all units. Almost all current methods 
of handling missing data either explicitly or 
implicitly make this assumption. 

In our simple examples of Sections 3.2 and 

3.3, if mechanisms are ignorable, ~_ equals 40, 
the probability that Z = 1 for respolndents. 

Since the posterior distribution of ~0 with 80 
observations depends only modestly on the prior 
distribution for ~0' there may be no need to use 
several ignorable models and display the sensi- 
tivity to these. In other cases, especially those 
with multivariate Z, it may be wise to consider 
several ignorable models (e.g. ,linear and quadra- 
tic regressions, log-linear regressions), to 
enable an e~valuation of sensitivity to prior 
assumptions about the data structure assumed 
common across all units. 

3.5 Demands on system and user 

There are undeniable demands placed on both 
system and user by requiring I analyses of each 
completed data set. There must be efficient ways 
to store the I M-vectors (e.g., by pointers), and 
the user must be willing to examine the results 
of the I data analyses for variability of answers 
within models and sensitivity of answers tO 
different models. 

The questions of how many replications of a 
model are needed and how many different models 
should be used are difficult if not impoqsible to 

answer in general. Perhaps in some cases just a 
few replications (e.g., five) and one model will 
be enough to tell the data analyst that non- 
response is a serious problem; for example, sup- 
pose that a nonresponse model positing only mild 
differences between respondents and nonrespondents 
yields vastly different answers in just five 
replications. In other cases, five replications 
and one model may be enough to convince the data 
analyst that there is no real problem due to non- 
response; for example, suppose that the one model 
posits potentially quite violent differences be- 
tween respondents and nonrespondents and yet the 
five answers differ in only minor ways. Inter- 
active computing may be of great benefit to such 
analyses. 

In all cases, the models used for imputation 
should be explicitly stated so that results can 
be unambiguously transmitted betweer~ and evaluated 
by, researchers. Hopefully, within a particular 
substantive area of study, experience will suggest 
which models are most acceptable. Of course, this 
supposes active study aimed at understanding the 
relative attributes of respondents and non- 
respondents in that research area; e.g., 

Rosenthal and Rosnow (1975) study the volunteer 
and nonvolunteer subject in psychological 
research 
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With large data sets and modest computing 
facilities, it may be necessary to randomly 
subsample the data set and evaluate the effect 
of nonresponse on the subsample. In the same way 
that a randomly drawn sample can tell us about a 
population, a randomly drawn subsample can tell 
us about nonresponse problems in the sample. 

4. Definition of tasks needed to create 
imputed values 

I see three tasks needed to create the im- 
puted values assumed in Section 3 to exist: the 
"imputation task", the "estimation task", and 
the "modelling task". Figure 2 displays how 
these tasks fit into our general plan for hand- 
ling non-response. The modelling task chooses a 
model for the data, the estimation task computes 
a posterior distribution for the parameters of 
this model, and the imputation task takes one 
random draw from the associated predictive dis- 
tribution of the missing data given the observed 
data. 

For k = 1 ..... K ; K = # models 

L!_ 
Modeling Task- choose model 
for data 

4, 

I Estimation Task ' calculate ~ 
posterior distribution of para- I 

I meters for model chosen in Box I I 

For ~ = 1 .... ,rk; r k = # repli- 

cates of kth model 

+ 

l 
lmputation Task - draw from 
posterior distribution in Box 2 
and create M-vector of imputed 

values Xkj ~ 

IStore El k = I,...,K; ~ = I 
K Zk~ ' " " " 

k;~ rk = I as M I-vectors with 

ointers to missing values 

! 

i 
t 

Analyze each of the I im- I 
puted data sets 

Figure 2: Creating the Multiple 
Imputations 

4.1 The imputation task 

Let Z be the n x p units by variables matrix 
of data in the survey. The imputation task 
assumes that (i) Z has been modelled with rows 
independent (not necessarily identically distri- 
buted) given an unknown parameter ~ and (2) the 
posterior distribution of the parameter ~, pos(4), 
exists in the sense that a random draw of ~ from 
pos(4) can be made. The imputation task then 
makes one random draw from the associated pre- 
dictive distribution of missing values given the 
observed values under that model, and thus 
creates one M-vector of imputed values to com- 
plete the data set. When r replications are 
desired for a model, the imputation task is per- 
formed r times for that model. These replica- 
tions simulate the predictive distribution of 
the missing values given the observed values 
under that particular model. 

The imputation task begins by sorting the 
sampled units by their pattern of missing data. 
Index these patterns by j--0,.,,,.J, where j=0 
refers to units with no missing data. The 
phenomenological Bayesian framework tells us 
that, in general, each pattern of missing data 
corresponds to a separate i.i.d, model for the 
data. For the j th pattern of missing data, sup- 
pose that each row of Z is modelled as i.i.d. 
f(Zl4-), j=0 ..... J where 4. = ~j(4) and 4 has 
posterior distribution pos j (4). When mechanisms 
are ignorable, 4 = 41 = ... = 4j, and thus the 
rows of Z are no~ only independent, they are al- 
so identically distributed. 

For the j th pattern of missing data, parti- 
tion Z into Z = (V.,U.) where V. are the missing 

3 3 3 
variables and U. are the observed variables; for 
j=0, Z=U 0. Sin~e for each unit we must impute 
values for V. given the model and the observed 
values of Uj j, we factor the density f(Zl4j) as 

f(Zl4 j) = f(Vj IUj,~j) f(Uj l~k ) 

where ~j = qj (~j) 

~j - qj (~j) 

and where qj (.) and ~j (.) are the appropriate func- 

tions of the parameter 4° corresponding to the 
partition Z = (V.,U.). 3 For example, if Z is 
normal under f(.~.)3, then 4- represents the mean 

and covariance of Z, ~j =aqj (~J) represents the 

regression parameters of V on U° (i.e., the re- 
gression coefficients and ~ondit~onal covariance 
of V. given U.), and n. = q-.(4.)represents the 
marginal parameters of3U. (~ ,.e ]. the mean and 
covariance of U°). If Z3is categorical under 
f('l'), then represents the cell probabilities 
defined by z,4J3~, represents the conditional 
probabilities of J being in cells defined by V. 
given membership in the cells defined by U., 3 
and ~. represents the probabilities of being in 
cellsJdefined by U.. 

3 
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Using this notation, the imputation 
task is as follows. 

A. Draw 0 n f rom t h e  p o s t e r i o r  d i s t r i b u t i o n  
of 00,Vpos(00 ). Call the drawn value 

0 0 • 

B. For j =i ..... J , 
(i) draw 0j from pos(0j 100 =00 ..... 0j_ 1 

= 0j_ l) 
(ii) calculate ~j = qj(0j) 

Equiva_lently, letting ~j = qj (0.) and 
nj = qj(0j), J 

( ' from pos(~jl00 = 00 ~i = i ) draw ~j 

~l ..... ~j-1 = ~j-*l ) 
ii') call the drawn value ~. 

J 

(iii) for each unit with the j th pattern, 
independently draw the imputed , 
value of V. from f(V. IU.=U*, ~.=~ ) 

, ~ J J j J J 
where Uj is the unit's value of U..j 

In large surveys with many respondents, 
pos(00) may be nearly point mass; however, the 
posterior distribution of each ~. will generally 
not be very sharp, even if the J j th group is 
very large, because there exist no data to 
directly estimate $.. That is, since V° is en- 

J J 
tirely missing for the ~th group of units and ~. 
is the parameter of the conditional distributio~ 
of Vj given Uj, there are no data to estimate ~.j 

directly. Hence, even when pos(0~) is point mass, 
, u 

the values ~ will vary in replications of the 
imputation task. 

~hen mechanisms are ignorable, ~j=qj(00) so 

that steps B(i) and B(ii) may be replaced by 

calculate ~j = qj (00). 

In large surveys with pos(0 O) essentially point 
mass at 0" and with ignorabIe mechanisms assumed, 
the values u ~, will not vary in replications of 
the imputation task, and then variation in the 
imputed values V. will be due to inability to 
predict perfectl~ V. from U.. Hot deck procedures 
that randomly draw J from th~ matches are 
essentially drawing from a predictive distribu- 
tion under a categorical model assuming (I) the 
posterior distribution of 00 is point mass (i.e., 
equals the observed proportlons for respondents), 
and (2) mechanisms are ignorable. 

Whether mechanisms are ignorable or not, 
having a large number of background variables 
that are recorded for all units and are highly 
correlated with variables that may be missing 
reduces the variation in imputed values across 
repeated imputations. In our notation, the 
residual variation in the model f(Vj IUj ,~j) used 
in step B is smaller if U i 
includes many variables capable of predict- 
ing V. than if U includes only a few relevant 
variables. J 

4.2 The estimation task 

The estimation task assumes one model,f(Zl0) 
with prior distribution prior(0), has been chosen 
and computes the posterior distribution of 0. 
Actually, calculating this posterior distribution 
can be not only analytically intractable but also 
computationally demanding. Consequently, we often 
must be satisfied with approximate posterior 
distributions from which we can easily draw. 

Ignorable mechanisms imply that "the missing 
data are missing at random" and model parameters 
are "distinct" from missingness parameters 
(Rubin, 1976). Consequently, when mechanisms are 
ignorable, the estimation task corresponds to 
Bayesian computations for posterior distributions 
of parameters when faced with missing data,ignor- 
ing the process that creates missing data. Often 
special computational programs are needed even 
with rather simple unrestricted models. We will 
not delve into this issue because it is not 
unique to our method of handling nonresponse prob- 

lems, but arises with parametric inference when 
faced with missing data. The statistical litera- 
ture on maximum likelihood/Bayesian estimation of 
parameters when faced with missing data is now 
quite extensive. If the respondents greatly out- 
number all nonrespondents, little may be lost by 
estimating 0- from the complete data alone. 
Standard hotOdeck procedures may be thought of as 
estimating a categorical model assuming mechanisms 
are ignorable using only the data from the 
respondents. 

When mechanisms are nonignorable, more 
elaborate, nonstandard models are required and 
there is essentially no literature on calculating 
posterior distributions under such special models. 
Presumably, much statistical/numerical work may 
be needed to find useful approximations to poste- 
rior distributions under such models. The basic 
problem arises because when mechanisms are non- 
ignorable, each pattern of missingness in general 
has its own parameter 0.. If the 00 .,0_ were ' 0 "  j 

not tied together via aJprior, only the posterior 
distributions for 00 and n = (0j) j = 1 J 
would be modified by the J qJ ' .... 
data; the posterior distributions for ~ =qj(0 ),j= 
1 ..... J would then equal their prior J J 
distributions unless ~. and ~. were dependent a 
priori. Because only ~he parameters ~. are use--d 
in the imputation step, the models we Jwish to use 
will, via prior restrictions, tie the 0. together 
in some way and/or tie ~. to N. in someJway. 
These ties may generate J nonstandard models and 
therefore the estimation task for such models may 
need development. Of course, there are cases of 
these special models in which the estimation task 
(or a simple approximation to the estimation task) 
uses standard tools. Rubin (1977,JASA) and Rubin 
(1977, unpublished) address such situations. 

4.3 The modelling task 

The modelling task formulates the model 
f(Zl0) prior(0) needed in the imputation task. 
Assuming ignorable mechanisms, this task is simply 
a good standard Bayesian formulation of a model 
appropriate for a multivariate data set. This is 
not to say the task is easy; it may not be, even 
with complete data, but the issues that arise are 
basically the same as arise with complete data. 
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Although in the context of nonresponse there is 
an emphasis on obtaining accurate predictions of 
those missing values that occur in the data 
matrix, standard tools of mathematical statistics 
can be applied without much modification. Hence, 
with ignorable mechanisms, the modelling task 
does not need new tools. 

I must emphasize that in this context 
"standard" tools do not mean only models commonly 
used to analyze multivariate data. Rather I mean 
to include hyperparameter (or Empirical Bayes in 
the Efron and Morris sense) models that borrow 
strength by tying parameters together via prior 
restrictions. Such models play an important role 
in obtaining good estimates in complete-data 
problems, and I believe have an even larger role 
to play in missing data problems, especially 
when mechanisms are nonignorable. 

When mechanisms are nonignorable, however, 
new tools may be needed. The basic problem 
arises because, in general, each pattern of 
missingness has a separate model, and thus we 
need special models if we want to tie models to- 
gether. As far as I know, Rubin (1977,JASA) is 
the only published example of a model that ties 
respondents to nonrespondents via a nonignorable 
model. 

When building these special models, we 
should focus on ways to formalize prior knowledge 
and practical wisdom. I believe that the 
intelligent use of hyperparameter models is 
virtually necessary in all but the simplest cases. 
Here I will simply discuss a few kinds of models 
in order to indicate the kinds of ties that can 
be made between respondents and nonrespondents. 

When mechanisms are modelled as ignorable, 

40 = ~i = "'" - ~J' and thus ~j = qj(~0 ) with the 

strongest possible ties between the parameters 
for the different patterns of missingness. Con- 
sider the simplest case, J=l; see Figure 3. 
Usually we would model Z so that ~. (40) and 
nl(40) are a priori independent an~ t~us estimate 

~I(~0 ) only from the respondents. For example, 

consider the usual linear or log-linear regres- 
sion models where the distribution of the inde- 
pendent variables is considered "fixed." Note, 
however, that if ~I and n I are dependent a 
priori, as with soNe hypePparameter models on Z, 
the nonrespondent U_ data help to estimate ~i; 
that is, even thoug~ no V 1 data exist for non- 
respondents, the nonrespondents' U I data are 
informative about the conditional distribution 
of V 1 given U I. With ignorable mechanisms and 
many respondents, such information will usually 
be swamped by the stronger information about 
.$I coming from the respondents, but it may be 
important when mechanisms are nonignorable. 

At the other extreme from assuming ignorable 
mechanisms, we have ~ ,~i, " " "'~J a_ priori inde- 
pendent. Under such O model, we can only learn 

about h~ = q.l~.)from the Jpr~or (~j observed_U, data for 
the jt jgrou~ ~hat is, pos(~j) = l~j) 

pos (~.) d~. and ~^,...,~j are a posteriori 
independent ~. Now,Uprior ties between q. (~j) and 
n. = ~.(~.) may be quite important if, fSr 
e~ampl~, ~rior exchangeability arguments could 
be made among some of the variables. Of course, 
the data may tell us that 

40 , 41 ..... 4j should not be modelled as a 

priori independent; e.g., presumably, an 
examination of independent estimates will show 
that they might be more sensibly modelled as 
arising from a common distribution governed by a 
hyp erparamet er. 

An example of a simple model with some 
prior dependence between the 40 , 41,...,4J makes 
all ties through 40; that is, 

J 
prior(4) = prior(40) ~ prior(4j 140). 

j-1 

Units 

Respondents 
j =0 

Nonrespond ents 
j =i 

Z 
Var iab i es 

U 1 V 1 

observed 

observed 

observed 

missing 

! 

I 
i 
I 
i 

Figure 3: Simple Case of One Pattern of 
Nonresponse 

If we also add the restriction on prior(~, 1140 ) 

that prior(~ n ,4 0 ) = prior(~j lqj(40)) j 
Jl J 

we end up with a model that is easily dealt 
with in practice when the respondents are a 
large proportion of the sample. That is, under 
the model specified for the prior on 4, we have 
for task B(ii'), 

P°S(~jl40' ~I ..... ~j-i ) = pri°r(~jlq(40))' 

and if the respondent sample is large,we have 
that pos(4A) may be essentially determined by 
the respondent data alone. Hence, in this case 
for usual models, pos(40) is relatively easy to 
calculate and draw from, qj (~) is relatively 
easy to calculate, and -u pos(~j 140- 
~l,...,~j_l ) will be easy to draw ~rom by 

choosing commonly used prior distributions. The 
approach is used in Rubin (1977, JASA) when J-l, 
and suggested in Rubin (1977, unpublished) for 
J>l. 

Of course, just because the model of the 
previous paragraph is easy to use does not mean 
it is appropriate. In many cases I feel there 
will be stronger information in the data than is 
being reflected in such a mode], and we need new 
hyperparameter models to reflect this informa- 
tion. For example, under exchangeability argu- 
ments about variables, if the distribution of 
U. appears similar in the j th group and the res- 
pondent group, isn't that evidence that the 
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conditional distribution of V. given U. should 
J J 

also be similar to the conditional distribution 
of V. given U. in the respondent group? Or if 
the ~ondition~l distribution of some component 
of V. given U. is similar across all groups 
having both U j. and V. recorded, isn't that 
evidence thatJthe conditional distribution of 
that component of V. given U. in the j th group 
is similar to its d~stributi~n in the other 

groups ? 
In my experience, applied researchers often 

feel that the answers to these questions are 
"yes", and I think that their answers often re- 
flect good judgement. Consequently, it appears 
to me that formalizing questions like these into 
hyperparameter models reflecting reasonable 
prior beliefs is an important research area 
demanding close cooperation between the applied 
researcher and the statistician• Once such 

hyperparameter models are formulated, the 
estimation task may demand substantial attention• 
However, I feel that having a collection of 
flexible imputation models reflecting a variety 
of reasonable prior assumptions is necessary for 
the sensible handling of nonresponse problems• 
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