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Abstract 
 
Separation of likelihood and rare events are two interrelated problems in fitting the logistic regression 
model. We propose to address these issues by drawing the sample using ranked set sampling. An 
extensive simulation study was conducted to assess the performance of a logistic regression model fitted 
from ranked set samples and compared to those estimates using simple random samples. RSS performs 
best in small populations regardless of the distribution of the binary response variable in the population. 
As the sample and population sizes increase, the predictive ability under RSS also improves but it 
stabilizes to become comparable to SRS. Furthermore, RSS mitigates the problem of separation of 
likelihood especially when the population size is relatively large. In addition, RSS can be an alternative 
sampling scheme to Inverse Sampling in obtaining samples involving rare characteristics without 
necessarily blowing up the sample size. RSS provides sample into the estimation of logistic regression 
models high predictive accuracy and keeps costs at low levels. 
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I. Introduction 
 

Logistic regression model has become a very popular statistical technique in analyzing 
categorical variables. Aside from its interpretability and less stringer assumptions, it also provides tools in 
selection of the important predictors or independent variables. In epidemiology, logistic regression model 
can be used to determine the risk factors of a disease (Steinmann, et al., 2007).  In business analytics, it 
can be used to find out if a client would churn or not (Owczarczuka, 2010).  It can also be used to predict 
the outcome of a licensure examination (Wanvarie and Sathapatayavongs, 2007) using demographic 
profiles and academic records of the examinees as covariates. 

There are natural constraints in the implementation of logistic regression. Menard (1995) 
enumerated some of issues like specification error, multicollinearity, and numerical problems like zero 
cells and complete separation, that usually limit the implementation of logistic regression. Note that the 
first two problems are also common in linear regression. Specification error occurs when the functional 
form of the explanatory variables is not correctly specified, or that some important predictors are left out, 
or no data is available, or that it cannot be measured.   Furthermore, inclusion of irrelevant independent 
variables in the model would increase the standard errors of the parameter estimates, resulting to 
unreliable inference, see Menard (1995).  

More often than not, the independent variables are naturally correlated. Multicollinearity should 
be avoided in building models because it would bring problems in estimation and in hypothesis testing.     

Zero cells and separation of likelihood often threaten the numerical implementation of maximum 
likelihood estimation in logistic regression. Zero cell count may lead to some odds ratio estimates equal to 



 

infinity or zero. Moreover, because of the zero cells, the iteration for fitting the logit model does not 
converge or the standard errors of the estimates are very large, see Agresti (1996). 

In modelling binary response variables, the separation of likelihood, or simply called separation is 
a common problem. This occurs when one or more of a model’s covariates perfectly predict some binary 
outcome as noted by Zorn (2005). Albert and Anderson (1984) as cited by Lesaffre and Albert (1989) 
compared complete and quasi-complete separation, the latter denoting the case when such perfect 
prediction occurs only for a subset of observations in the data.  Zorn (2005) further observed that when 
separation of likelihood occurs, the likelihood function becomes monotone resulting to infinite maximum 
likelihood coefficient estimates for the predictor/s which cause/s the separation. 

Zorn (2005) identified the implications of complete separation. First, if there is a covariate which 
perfectly predicts the response variable, then there is no variation in the dependent variable that is needed 
to be explained by the other independent variables. Therefore, the corresponding coefficient estimates for 
other predictors will be zero. Second, since the likelihood is monotone or flat, this will yield large or 
infinite standard error estimates. For the case of quasi-complete separation, the coefficient estimate for the 
variable which causes the separation and its standard errors will be infinite, but the other covariates in the 
model may not be affected. 

There are several solutions for the separation problem in the literature. The most popular is 
dropping the separating variable(s) in the model. Clogg et al. (1991) suggests adding “artificial” data 
across the different patterns of (categorical) covariates and analysis is done on the modified data. Another 
approach is to use exact logistic regression that allows estimation of the coefficients even in the presence 
of empty cells and complete separation. The exact logistic regression uses the method of conditional 
maximum likelihood in performing exact inference for a parameter yielding exact p-values rather than 
approximations. This method prevents infinite estimated odds ratios or confidence intervals with one side 
equal to infinity, see Agresti (1996). However, Zorn (2005) pointed out that exact logistic regression may 
result to degenerate estimates when relatively sparse data or small number of observations in particular 
patterns of categorical predictors is present. 

Another approach in solving the problem of separation of likelihood is the modified score 
procedure, Firth (1993). The procedure modifies the maximum likelihood estimation by penalizing the 
score equation. The method reduces the bias on the maximum likelihood estimates for the coefficients of 
the logistic regression model. Moreover, the procedure does not produce infinite coefficient estimates. 
Heinze and Schemper (2002) noted the advantages of the modified score procedure over some known 
approaches to solve monotone likelihood problem. 

Clogg et al. (1991) considered the possibility of resolving the separation problem by adding 
“artificial” data across the different patterns of the categorical predictors and then conducting the analysis 
in the resulting data in the usual manner. This paper aims to consider sampling strategy as a possible 
solution to the separation problem.  Since the separation problem usually arises from the existence of 
“patterns” among the data on the predictors, then it is possible that the problem is avoided if the 
likelihood of such “pattern” is minimized. As noted by Menard (1995), the problem of separation of 
likelihood can be attributed to the data at hand. Hence, this study explores the possibility of using Ranked 
Set Sampling (RSS) as a remedy to the problem of monotone likelihood or separation. 

 
2. Logistic Regression with Rare Events 

 
 Rare events and unbalanced distribution of the two categories (“event” and “non-event”) in the 
population leads to some constraint in the estimation of logistic regression model, its predictive ability is 
also affected. Prediction of rare events using logistic regression, gathering data and estimation procedure 
would also be very crucial. 

King and Zeng (2001) observed that the problem with rare events is at least of two types. The 
first one is that logistic regression can sharply underestimate the probabilities of rare events. The second 
type in analyzing data with rare events is the inefficiency of the data collection method used. Some 
corrections were recommended and showed that a prior correction in logistic regression is needed if the 



 

functional form and explanatory variables seem appropriate; otherwise, the authors’ corrected version of 
weighting with rare event corrections would likely perform better. 
 Maalouf and Trafalis (2011) recommended the use of robust weighted kernel logistic regression 
in case of rare events. The estimation procedure combines the rare events corrections to logistic 
regression with truncated newton methods and are applied to kernel logistic regression (KLR). Maalouf 
and Trafalis (2011) noted that according to the significance test, rare event weighted kernel logistic 
regression (RE-WKLR) is more accurate than both support vector machines and truncated newton method 
in kernel logistic regression. Therefore, using the RE-WKLR leads to greater accuracy in predicting rare 
events. 

Furthermore, Maalouf and Trafalis (2011) reviewed known sampling methods dealing with rare 
events and reported that two of the basic sampling strategies are under-sampling, which eliminates units 
from the majority class or category, and over-sampling, which adds more units from the minority class or 
category. King and Zeng (2001) recommended the use of under-sampling of the majority class or 
category when logistic regression will be utilized. However, this sampling scheme induces biased in the 
estimates of the coefficient.  
 
3. Ranked Set Sampling 
 

In order to make reliable inferences while keeping costs at low-level, McIntyre (1952) proposed 
the ranked set sampling procedure. The sampling procedure offered to raise precision with availability of 
visual assessment of ranking units and without measuring the actual variable of interest. Stoke (1977) 
proposed the use of auxiliary information in the implementation of ranked set sampling. The idea is 
similar to sampling with probability proportional to size (PPS), the auxiliary variable or a frugal 
measurement is used in ranking the individuals or units. Stoke (1977) concluded that the level of 
precision depends on the degree of the relationship of the auxiliary and the target variables. It is assumed 
that the frugal measurement or concomitant variable is cheap and/or very easy to obtain. In medical 
studies, quantitative genetics, and ecological and environmental studies, some attributes can be easily 
obtained or quantified; however, some variables of interest are oftentimes time-consuming and/or 
expensive or impossible to measure. The use of auxiliary variables broadened the applications of the 
ranked set sampling scheme.   

Mapping is usually done in the study area to collect information on the concomitant variable 
before the target response variable and the covariates are measured. In addition, the frugal measurement, 
similar to the auxiliary variable for sampling with probability proportional to size (PPS), should be 
correlated to the target variable. The choice of the concomitant variable is very crucial and should be 
based on some sound theory.  The sampling procedure of balanced RSS is as follows: 
 
1. Consider a simple random sample (SRS) of size k, where k is called the set size, from the population of 
size N. The SRS of size k is obtained from the sampling frame only, it is not necessary to physically draw 
the sampled units or individuals. The sampling frame should contain an auxiliary variable that is 
correlated with the target variable (or, equivalently, some frugal measurement can be easily collected).  
We use the concomitant variable to rank the units in the SRS. The smallest or the 1st order statistic will be 
the 1st element in the sample of size k. After obtaining the 1st order statistic, the k-1 elements will be 
disregarded, and are eligible for subsequent selection.  
 
2. Obtain another SRS of size k and rank these units according to the concomitant variable. The 2nd order 
statistic or 2nd smallest unit will be the 2nd element in the sample of size k. Again, the k-1 units will be 
discarded and are made available for subsequent draws.  Repeat the process until the kth order statistics is 
selected to complete the sample of size k. 
 
3. Steps 1and 2 generates one cycle of samples. Repeat the cycle m times to obtain a sample of size n = 
mk. 



 

 
The literature on ranked set sampling provide estimation procedure of parameters such as the 

mean (Takahasi and Wakimoto, 1968), proportion (Chen et al., 2005) and variance (Stokes, 1980) We 
explore in this paper the use of RSS in model-building.  
 Muttlak (1995) suggested the use of RSS in estimating the parameters of the simple regression 
model. The objective was to increase the precision of the estimators of the slope and intercept relative to 
SRS design. It was reported that balanced RSS is advantageous over SRS in providing more efficient 
estimates of regression coefficients.  
 Twidwell (2000) fitted a model which relates the fish length, as a proxy variable for the length 
exposure, and the tissue concentration of mercury. The aim of the study was to determine the area of east 
Texas affected by contamination of mercury. Since the process involved in the study was expensive and 
destructive, RSS was implemented to minimize cost and increase precision. A simulation study by 
Twidwell (2000) showed that a balanced ranked set sample would lead to a slight improvement as 
compared to a simple random sample in regression analysis. 

Murff and Sager (2006) investigated the application of balanced RSS to Ordinary Least Squares 
(OLS) regression analysis through analytical and simulation studies. Some important findings are: if the 
ranking is done on the independent variable (RSSX), equivalently and often more efficient slope and 
intercept estimators may be achieved by performing SRS of three more sample items or units; if ranking 
is done on the dependent variable (RSSY), the gains in efficiency in equivalent sample size obtained by 
the slope estimator appears at best comparable to that of the RSSX slope estimator and at worst less than 
a SRS slope estimator of the same sample size.  

Chen et al. (2004) considered the dependent variable Y and the concomitant variables X in the 
classical linear regression model    XY '0  where   is the vector of the coefficients of the 
independent or concomitant variables and   is the stochastic error term, which is assumed to be normally 
distributed with mean 0 and variance 2 . 

 
The estimators can be obtained using least squares estimation procedure. Let 
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where k is the set size and m is the number of cycles. The least squares estimators of 0 and  are, 
respectively, given by: 
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These estimators are unbiased and are at least asymptotically as good as their counterparts based on an 
SRS. Estimating the regression coefficient, balanced RSS and SRS are asymptotically equivalent. Similar 
to the finding of Murff and Sager (2006), Chen et al. (2004) concluded that balanced RSS cannot do much 
for the improvement for the estimation of the regression coefficients. If this is the main concern, 
unbalanced RSS should be considered.  

Özdemir and Alptekinesin (2007) investigated the parameter estimation in multiple linear 
regression models using RSS as well. They examined the variances of the estimators using a Monte Carlo 
simulation study. RSS estimators of the coefficients of the regression model are more efficient than that 
of SRS when the sample size is small.  

 



 

Chen and Wang (2004) used RSS in regression analysis in a lung cancer study. The objective was 
to investigate the relationship of smoking status and three biomarkers: polyphenol DNA adducts, 
micronuclei, and sister chromatic exchanges. In this case, measuring the biomarkers is very expensive but 
the determination of the smoking level of individuals can be easily determined. Hence, RSS is appropriate 
because this sampling procedure promises low costs but relatively high efficiency compared to SRS. The 
set size k=10 in RSS yield remarkable improvement of the optimal sampling schemes over SRS.  

We evaluated the use of RSS in estimating a qualitative response model/discrete choice model. 
 
4. Simulation Studies 
 

A simulation study is designed with goal of determining the predictive accuracy of the logistic 
regression model using samples obtained using RSS and compare the results to those using simple 
random sampling (SRS). We consider four predictors that included the concomitant variable.  

Assume that the binary response variable is expensive to measure and the readily available 
concomitant variable used in the ranking process is a viable predictor in the model. The idea in choosing 
the concomitant variable is that its high/low values are associated with Y=1 or “success” while low/high 
values are associated with Y=0 or “failure”.  

The percentage of correct classification (PCC), sensitivity, and specificity are used as measures of 
predictive accuracy. The average number of separation of likelihoods in estimating the parameters of the 
logistic regression model is also recorded. This will help determine if high PCC, specificity, or sensitivity 
are brought about by separation and to verify the claim if RSS is indeed a possible solution to the problem 
of monotinicity of likelihoods.  

Sampling through RSS could ensure that the population will be well-represented because low 
values of the concomitant variable that correspond to “failures” would be obtained in the sample as well 
as high values which correspond to “success” as shown in Figure 1. This is also the reason why RSS work 
well for small populations which are usually heterogeneous. The sample gathered is evenly distributed to 
different parts of the distribution of the target variable. This idea should also work in the case of rare 
events or unbalanced distribution of success and failure because RSS will generate “enough” 
representation of the binary variable. The resulting samples could mitigate the likelihood problem thereby 
producing reasonable parameter estimates and, subsequently, better predictive ability of the estimated 
logistic regression model.  

 
Figure 1. Distribution of the response variable Y across the concomitant variable 

 
 

The population size (N=1,000, 5,000 and 10,000) is varied to determine how RSS will affect the 
sample and later in the estimation of the logistic regression model.  RSS usually performs well in small 
populations while SRS generally yield representative samples in large populations of when the population 
is homogeneous. Furthermore, sampling rate (n=1%, 3%, 5% of N) is varied to assess the efficiency of 



 

estimates of the parameters of the model to varying sample sizes. Moreover, we also investigate the 
ability of RSS in resolving the separation of likelihood problem in small population with small sample 
size. 

Different distributional assumptions of the concomitant variable are considered such as normal 
and Poisson. A count ranking variable contains less information than a continuous variable. The mean and 
variance were allowed to vary. High degree of variation implies that the concomitant variable contain 
more information on the target variable Y, while lower variance means less information on Y. 
 The likelihood separation problem would likely occur when the binary distribution of the 
response variable is severely unbalanced. Thus, different levels of unbalancedness would help in the 
assessment of the effect of sample selection (RSS) in estimating the logistic regression model. The 
distribution of the “success” and “failure” categories in the population is varied as follows: balanced 
(50%-50%), moderately balanced (40%-60%), moderately unbalanced (25%-75%), and severely 
unbalanced (10%-90%), for the “success”-“failure” proportions. 

We fix the set size in RSS at k=10. In Figure 1, RSS would obtain samples from each of the small 
bell-shaped curves representing the distribution of the 1st until the 10th order statistics. Hence, RSS would 
most likely generate “enough” representative of the population. 
 Table 1 shows the specifications in the implementation of RSS in obtaining the samples that will 
be used later on in the estimation of the logistic regression model. Since the sample size n = mk then the 

number of cycles is .
10
nm 

 
 

Table 1. Number of Cycles in RSS by Sample Size and Population Size 
 

 
Population Size (N) 
 

Sample Size (n) Number of 
Cycles (m) 

1000 
10 1 
50 5 
100 10 

5000 
50 5 
250 25 
500 50 

10000 
100 10 
500 50 

1000 100 
 
 
5. Results and Discussion 
 

In Table 2, the percent of correctly classified observations (PCC) of the fitted logistic regression 
model using ranked set samples (RSS), are generally higher than that of using simple random samples 
(SRS). The largest difference, around 30%, can be noticed for n = 10 and N = 1,000. But, as the sample 
size increases, the difference of the PCC’s of the two sampling scheme depreciates, and is true across all 
population sizes. Similar observation can be noticed for the specificity and sensitivity of RSS and SRS. 
Furthermore, even if only 1% of the population is sampled, RSS will less likely result to separation of 
likelihood. The highest occurrence of separation of likelihood is 16.5% for the extreme case (n=10, 
N=1,000). In SRS, however, there is a very high chance of having a separation of likelihood especially for 
small populations. For moderate and large populations, separation of likelihood happens more often only 



 

in very small sample size, but increases in sample size lowers the chance of separation of likelihood. 
Compared to RSS, SRS always encounter a very large number of times of monotonicity of likelihood. 
Very high values of PCC’s for SRS are actually consequence of separation of likelihood. 
 Table 3 shows that, even under moderately balanced distribution of the binary variable, RSS 
performs better than SRS.  The difference of the evaluation measures between the two sampling schemes 
is largest for the small populations (N=1,000). 
 Sensitivity is the percentage of observations which are predicted to belong in the “success” 
category given that they actually belong there. In Table 3, sensitivity under different sample sizes and 
population sizes for RSS are generally larger than those in SRS. However, when the population is getting 
large, the sensitivity of the models estimated using samples from two sampling designs becomes 
comparable. It can also be noticed that RSS had separations of likelihood only in the extreme scenario 
(small population, small sample size). This suggests that it is very unlikely for RSS to encounter the 
problem of separation for small populations, given that the sample size is 5-10% of the population size, 
and for average to large populations regardless of the sample size. Compared to RSS, SRS has a very high 
chance of occurrence of separation of likelihood, specifically when the sample size is only 1%. Generally, 
the results are almost similar to that of the balanced case. This means that when the distribution of the 
binary variable is moderately balanced, the predictive accuracy of the fitted logistic regression model is 
not far from the balanced case.  

 
 

Table 2 - Measures of Predictive Accuracy for Balanced Case (50%-50%) 
 

Sample Size 
(n) 

N=1,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

10 96.65 96.58 96.68 63.06 60.08 61.14 16.5 100 

50 97.95 97.51 98.4 93.14 93.52 92.5 1 99.25 

100 97.85 97.36 98.32 96.08 96.21 95.33 0.25 95.5 

Sample Size 
(n) 

N=5,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

50 97.46 96.89 98.04 93.53 93.59 93.24 1.5 99 
250 97.09 96.91 98.72 97.27 97.22 97.29 0 41.25 
500 97.8 96.83 98.71 97.52 97.4 97.61 0 9.75 

Sample Size 
(n) 

N=10,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

100 97.64 96.79 98.49 96.09 95.98 96.15 2.75 92.25 
500 97.74 96.52 98.93 97.38 96.86 97.87 0 6.75 
1000 97.63 96.34 98.9 97.5 96.77 98.21 0 2.5 

 
 
 
 
 
 



 

Table 3 – Measures of Predictive Accuracy for Moderately Balanced Case (40%-60%) 
 

Sample Size 
(n) 

N=1,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

10 97.53 98.06 96.63 62.68 63.32 56.04 62 100 
50 98.20 98.85 97.15 93.25 94.25 91.53 0 100 
100 98.10 98.78 97.03 96.30 96.95 95.28 0 100 

Sample Size 
(n) 

N=5,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

50 98.10 98.40 95.58 93.50 94.58 91.63 0 100 
250 98.18 98.65 97.45 97.70 98.18 96.90 0 50 
500 98.23 98.58 97.63 97.90 98.38 97.10 0 0 

Sample Size 
(n) 

N=10,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

100 98.18 98.55 97.58 96.50 97.05 95.53 0 100 
500 98.25 98.68 97.58 97.90 98.33 97.18 0 0 
1000 98.15 98.60 97.48 98.05 98.50 97.35 0 0 

 
 The difference between the PCC’s for RSS and SRS are largest when the population is small 
(N=1,000) for moderately unbalanced case as shown in Table 4. As the population size increases, the 
PCC’s become comparable for the two sampling designs. In addition, the specificity for RSS is higher 
than for SRS when the population size is small. As the sample size increases, the specificities also 
increase. RSS has greater advantage over SRS when the population size is small. As the population size 
increases, the specificity for the two sampling designs becomes comparable. It can also be observed that 
when the population is moderate (5,000) or large (10,000), it is less likely for RSS to cause a separation 
of likelihood. Hence, even if only 1% of the population size is taken as the sample, separation would not 
be a problem anymore in RSS, this is not the case in SRS. 

Sensitivity for the severely unbalanced case is the lowest since only 10% of the population is 
classified as “success” category. Hence, it is more difficult in this case to generate samples coming from 
the “success” category. 
 Table 5 summarizes the results when the distribution of Y is severely unbalanced in the 
population. Even if the distribution of Y is severely unbalanced, separation of likelihood is still very 
unlikely to happen in RSS most especially when 5-10% of a small population is sampled or at least 1% 
for a medium- to large-sized population. In SRS, however, there is a very high change of obtaining a 
sample with very small number of observations belonging in the “success” category. Based on the 
sensitivity in Table 5, RSS still has greater advantage over SRS when the population size is small, i.e. 
N=1,000. But, as the sample size and population size increase, the proportion of correct classification 
improves for SRS. The sensitivity for large population (10,000) for RSS and SRS are comparable. Large 
differences for sensitivity of RSS and SRS can be noticed in cases where the sample size is 1%. This 
suggests that if it is very expensive to obtain a sample, gathering only 1% of the population using RSS 
would suffice and would yield better predictive accuracy over SRS. This further suggests that RSS 
provides an option to inverse sampling when obtaining samples of units with rare characteristic while 
maintaining a fixed sample size.  



 

Table 4 - Measures of Predictive Accuracy for Moderately Unbalanced Case (25%-75%) 
 

Sample Size 
(n) 

N=1,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

10 96.98 97.98 93.62 60.97 65.79 41.04 22 100 
50 98.40 99.08 96.48 93.75 95.48 87.75 0 100 
100 98.43 99.18 96.10 96.50 97.6 93.08 0 100 

Sample Size 
(n) 

N=5,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

50 98.01 98.69 95.93 93.49 95.47 86.87 0.8 99.8 
250 98.28 98.78 96.75 97.78 98.53 95.53 0 50 
500 98.38 98.80 97.20 98.15 98.78 96.35 0 0 

Sample Size 
(n) 

N=10,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

100 98.28 98.75 96.88 96.35 97.55 92.60 0 100 
500 98.38 98.85 98.98 98.20 98.85 96.23 0 0 
1000 98.38 98.83 97.05 98.30 98.88 96.63 0 0 

 
Table 5 - Measures of Predictive Accuracy for Severely Unbalanced Case (10%-90%) 

 

Sample Size 
(n) 

N=1,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

10 95.53 97.91 72.76 59.40 65.09 17.20 23.8 99.5 
50 96.38 98.50 78.23 92.45 95.43 61.13 0 75 
100 96.90 98.78 79.50 94.95 97.45 70.88 0 75 

Sample Size 
(n) 

N=5,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

50 96.83 98.63 81.00 92.63 95.60 61.38 0 75 
250 96.93 98.85 79.58 96.48 98.48 77.88 0 75 
500 96.90 98.80 79.45 96.78 98.70 79.28 0 0 

Sample Size 
(n) 

N=10,000 
% of Separation 

RSS SRS 
PCC Specificity Sensitivity PCC Specificity Sensitivity RSS SRS 

100 96.90 98.93 78.83 95.30 97.70 70.98 0 75 
500 97.05 98.93 79.63 96.85 98.73 79.63 0 25 
1000 97.05 99.00 79.40 96.95 98.83 79.75 0 0 

 



 

6. Illustration 
 
 The proposed methodology is applied to farming households. Based on the Census of Agriculture 
in 2002 conducted by the National Statistics Office (NSO) in the Philippines, very few farmers plant 
lettuce, cauliflower, and asparagus. These are some high value crops that grow only in few areas in the 
Philippines. Instead of using the farmer level information, the variables were aggregated in the barangay 
level. Thus, the units of measurement considered in this illustration are the barangays. 
 The target binary variable in this case is defined as follows: 
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Only 2.18% (273 out of 12,519) of all the barangays in the country have farmers planting the rare 

high value crops. Therefore, the distribution of the response variable Y is severely unbalanced. Note that 
this case is much more unbalanced than the most extreme case (10%-90%) considered in the simulation 
scenarios. The objective here is to predict if rare high value crops are grown in a barangay or not using 
the estimated logistic regression model. 

The concomitant variable to be used in ranking the barangays is the proportion of farmers in a 
barangay who have post-graduate degrees. Growing these crops requires more advanced agronomic 
concepts; hence, it is expected that as farmers achieve more advanced degrees, they will likely to be 
knowledgeable in growing these crops. This indicator is indeed strongly correlated to the binary response 
variable. In fact, the odds ratio between the two variables is approximately 10. Since the data set 
considered is a census, the concomitant variable is readily available. The predictors to be used in the 
estimation procedure are mean age of the farmers in the barangay, total farm area, total area harvested 
from 2001-2002, proportion of irrigated farms, and proportion of farmers who have post-graduate 
degrees. 

The predictive accuracy of the fitted model using RSS and SRS are given in Table 6. 
 

Table 6 - Percentage of Correctly Classified Predicted Barangays  
which Plant Rare High Value Crops by Sample Size 

 

Sample Size 
RSS SRS 

PCC Sensitivity Specificity Separation PCC Sensitivity Specificity Separation 

140 93.2 22.2 98.4 Yes 96.1 20 99.2 No 
660 98.4 16.7 100 Yes 98.5 0 99.8 No 
1000 97.8 14.3 99.8 No 97.3 0 99.7 No 
1350 97.9 24.1 99.7 No 98.3 0 99.9 No 

 
The primary interest here is to predict correctly if a barangay has at least one farmer planting the 

rare high value crops. The proposed method was done only once unlike in the simulation study wherein 
the procedure was repeated 100 times. Note that using RSS as the sampling design resulted to separation 
of likelihood for sample of sizes 140 and 660 unlike using SRS which did not encounter this problem for 
all the sample sizes considered. This might be caused by the very severely unbalanced distribution of the 
response variable (2.18%-97.82%) which was not considered in this study. Nevertheless, obtaining a 
sample of at least 1,000 barangays (out of 12,519) prevented the occurrence of the separation. Moreover, 
the sensitivities under RSS are higher than those of SRS. This suggests that using RSS in fitting the 
logistic regression model has greater advantage in predicting a barangay with farmers planting lettuce, 

if ith barangay has at least one farmer who plants either lettuce, cauliflower, or asparagus 
 
otherwise 



 

asparagus, or cauliflower correctly over SRS. This result can be attributed to the strong relationship 
existing between the binary response variable and the concomitant variable.  
 
7. Conclusion 
 

Samples drawn using RSS yield better estimates of the logistic regression model compared to 
SRS. However, as the population and sample sizes increase, the two sampling designs become 
comparable in terms of percentage of correctly classified observations in the estimated logistic regression 
model. The predictive ability of the estimated logistic model using RSS performs best when the 
population size is small. This is true for different proportions of the “success”-“failure” in Y in the 
population. The predictive ability of the fitted model using both RSS and SRS usually decreases as the 
distribution of Y in the population becomes severely unbalanced. 

If the costs in obtaining samples, most especially of rare events or characteristics, are too high, 
small sampling rate would be sufficient in estimating a logistic regression model provided that RSS is 
used. RSS can be an alternative sampling scheme to inverse sampling in obtaining rare events or 
characteristics without blowing up the sample size. Furthermore, the correlation between the concomitant 
variable and the binary response variable matters more than the nature of the frugal measure. 

The use of RSS in drawing of samples to be used in fitting a logistic regression model can prevent 
the problem of separation of likelihood even when the distribution of Y is severely unbalanced. For 
moderately-sized sampling rate in small populations, or with a very small sampling rate in large 
populations, using RSS in drawing samples to be used in estimating the logit model would unlikely 
encounter the separation of likelihood problem. 
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